ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab Unicode version

Theorem rabssab 3245
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2464 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 simpr 110 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32ss2abi 3229 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  | 
ph }
41, 3eqsstri 3189 1  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2148   {cab 2163   {crab 2459    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-in 3137  df-ss 3144
This theorem is referenced by:  epse  4344  riotasbc  5848  genipv  7510  toponsspwpwg  13607  dmtopon  13608
  Copyright terms: Public domain W3C validator