Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabssab | Unicode version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . 2 | |
2 | simpr 109 | . . 3 | |
3 | 2 | ss2abi 3219 | . 2 |
4 | 1, 3 | eqsstri 3179 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 cab 2156 crab 2452 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-in 3127 df-ss 3134 |
This theorem is referenced by: epse 4325 riotasbc 5821 genipv 7458 toponsspwpwg 12773 dmtopon 12774 |
Copyright terms: Public domain | W3C validator |