Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabssab | Unicode version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2453 | . 2 | |
2 | simpr 109 | . . 3 | |
3 | 2 | ss2abi 3214 | . 2 |
4 | 1, 3 | eqsstri 3174 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2136 cab 2151 crab 2448 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-in 3122 df-ss 3129 |
This theorem is referenced by: epse 4320 riotasbc 5813 genipv 7450 toponsspwpwg 12660 dmtopon 12661 |
Copyright terms: Public domain | W3C validator |