ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab Unicode version

Theorem rabssab 3267
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2481 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 simpr 110 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32ss2abi 3251 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  | 
ph }
41, 3eqsstri 3211 1  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   {cab 2179   {crab 2476    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3159  df-ss 3166
This theorem is referenced by:  epse  4373  riotasbc  5889  genipv  7569  toponsspwpwg  14190  dmtopon  14191
  Copyright terms: Public domain W3C validator