ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab Unicode version

Theorem rabssab 3230
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2453 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 simpr 109 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32ss2abi 3214 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  | 
ph }
41, 3eqsstri 3174 1  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2136   {cab 2151   {crab 2448    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-in 3122  df-ss 3129
This theorem is referenced by:  epse  4320  riotasbc  5813  genipv  7450  toponsspwpwg  12660  dmtopon  12661
  Copyright terms: Public domain W3C validator