ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssab Unicode version

Theorem rabssab 3312
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2517 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 simpr 110 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32ss2abi 3296 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  | 
ph }
41, 3eqsstri 3256 1  |-  { x  e.  A  |  ph }  C_ 
{ x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2200   {cab 2215   {crab 2512    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210
This theorem is referenced by:  epse  4433  riotasbc  5971  genipv  7696  toponsspwpwg  14696  dmtopon  14697
  Copyright terms: Public domain W3C validator