| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrabeq | GIF version | ||
| Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| ssrabeq | ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3277 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉 | |
| 2 | 1 | biantru 302 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ∧ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉)) |
| 3 | eqss 3207 | . 2 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ∧ {𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ 𝑉)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 {crab 2487 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 |
| This theorem is referenced by: difrab0eqim 3526 |
| Copyright terms: Public domain | W3C validator |