ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrabeq GIF version

Theorem ssrabeq 3149
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3148 . . 3 {𝑥𝑉𝜑} ⊆ 𝑉
21biantru 298 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
3 eqss 3078 . 2 (𝑉 = {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
42, 3bitr4i 186 1 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1314  {crab 2394  wss 3037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rab 2399  df-in 3043  df-ss 3050
This theorem is referenced by:  difrab0eqim  3395
  Copyright terms: Public domain W3C validator