ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucon Unicode version

Theorem sucon 4619
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
sucon  |-  suc  On  =  On

Proof of Theorem sucon
StepHypRef Expression
1 onprc 4618 . 2  |-  -.  On  e.  _V
2 sucprc 4477 . 2  |-  ( -.  On  e.  _V  ->  suc 
On  =  On )
31, 2ax-mp 5 1  |-  suc  On  =  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373    e. wcel 2178   _Vcvv 2776   Oncon0 4428   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator