ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucon Unicode version

Theorem sucon 4645
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
sucon  |-  suc  On  =  On

Proof of Theorem sucon
StepHypRef Expression
1 onprc 4644 . 2  |-  -.  On  e.  _V
2 sucprc 4503 . 2  |-  ( -.  On  e.  _V  ->  suc 
On  =  On )
31, 2ax-mp 5 1  |-  suc  On  =  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395    e. wcel 2200   _Vcvv 2799   Oncon0 4454   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator