| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sucon | GIF version | ||
| Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| sucon | ⊢ suc On = On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onprc 4588 | . 2 ⊢ ¬ On ∈ V | |
| 2 | sucprc 4447 | . 2 ⊢ (¬ On ∈ V → suc On = On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc On = On | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 Vcvv 2763 Oncon0 4398 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |