ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucon GIF version

Theorem sucon 4512
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
sucon suc On = On

Proof of Theorem sucon
StepHypRef Expression
1 onprc 4511 . 2 ¬ On ∈ V
2 sucprc 4372 . 2 (¬ On ∈ V → suc On = On)
31, 2ax-mp 5 1 suc On = On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wcel 2128  Vcvv 2712  Oncon0 4323  suc csuc 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-setind 4496
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-sn 3566  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator