![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucon | GIF version |
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
Ref | Expression |
---|---|
sucon | ⊢ suc On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onprc 4585 | . 2 ⊢ ¬ On ∈ V | |
2 | sucprc 4444 | . 2 ⊢ (¬ On ∈ V → suc On = On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc On = On |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Oncon0 4395 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-sn 3625 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |