ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucon GIF version

Theorem sucon 4605
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
sucon suc On = On

Proof of Theorem sucon
StepHypRef Expression
1 onprc 4604 . 2 ¬ On ∈ V
2 sucprc 4463 . 2 (¬ On ∈ V → suc On = On)
31, 2ax-mp 5 1 suc On = On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wcel 2177  Vcvv 2773  Oncon0 4414  suc csuc 4416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-sn 3640  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419  df-suc 4422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator