ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprc Unicode version

Theorem sucprc 4390
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )

Proof of Theorem sucprc
StepHypRef Expression
1 df-suc 4349 . . 3  |-  suc  A  =  ( A  u.  { A } )
2 snprc 3641 . . . 4  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
3 uneq2 3270 . . . 4  |-  ( { A }  =  (/)  ->  ( A  u.  { A } )  =  ( A  u.  (/) ) )
42, 3sylbi 120 . . 3  |-  ( -.  A  e.  _V  ->  ( A  u.  { A } )  =  ( A  u.  (/) ) )
51, 4syl5eq 2211 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  ( A  u.  (/) ) )
6 un0 3442 . 2  |-  ( A  u.  (/) )  =  A
75, 6eqtrdi 2215 1  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114   (/)c0 3409   {csn 3576   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-suc 4349
This theorem is referenced by:  sucprcreg  4526  sucon  4530
  Copyright terms: Public domain W3C validator