ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprc Unicode version

Theorem sucprc 4414
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )

Proof of Theorem sucprc
StepHypRef Expression
1 df-suc 4373 . . 3  |-  suc  A  =  ( A  u.  { A } )
2 snprc 3659 . . . 4  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
3 uneq2 3285 . . . 4  |-  ( { A }  =  (/)  ->  ( A  u.  { A } )  =  ( A  u.  (/) ) )
42, 3sylbi 121 . . 3  |-  ( -.  A  e.  _V  ->  ( A  u.  { A } )  =  ( A  u.  (/) ) )
51, 4eqtrid 2222 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  ( A  u.  (/) ) )
6 un0 3458 . 2  |-  ( A  u.  (/) )  =  A
75, 6eqtrdi 2226 1  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-suc 4373
This theorem is referenced by:  sucprcreg  4550  sucon  4554
  Copyright terms: Public domain W3C validator