| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl33anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| sylXanc.6 |
|
| syl33anc.7 |
|
| Ref | Expression |
|---|---|
| syl33anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | sylXanc.5 |
. 2
| |
| 7 | sylXanc.6 |
. 2
| |
| 8 | syl33anc.7 |
. 2
| |
| 9 | 4, 5, 6, 7, 8 | syl13anc 1251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: strleund 12781 strext 12783 iscnp4 14454 cnpnei 14455 cnptopco 14458 cncnp 14466 cnptopresti 14474 lmtopcnp 14486 txcnp 14507 xmetrtri 14612 bl2in 14639 blhalf 14644 blssps 14663 blss 14664 |
| Copyright terms: Public domain | W3C validator |