ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl33anc Unicode version

Theorem syl33anc 1243
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
sylXanc.6  |-  ( ph  ->  ze )
syl33anc.7  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et  /\  ze ) )  ->  si )
Assertion
Ref Expression
syl33anc  |-  ( ph  ->  si )

Proof of Theorem syl33anc
StepHypRef Expression
1 sylXanc.1 . . 3  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
41, 2, 33jca 1167 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 sylXanc.5 . 2  |-  ( ph  ->  et )
7 sylXanc.6 . 2  |-  ( ph  ->  ze )
8 syl33anc.7 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et  /\  ze ) )  ->  si )
94, 5, 6, 7, 8syl13anc 1230 1  |-  ( ph  ->  si )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  strleund  12483  iscnp4  12858  cnpnei  12859  cnptopco  12862  cncnp  12870  cnptopresti  12878  lmtopcnp  12890  txcnp  12911  xmetrtri  13016  bl2in  13043  blhalf  13048  blssps  13067  blss  13068
  Copyright terms: Public domain W3C validator