ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2in Unicode version

Theorem bl2in 12331
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 952 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( Met `  X ) )
2 metxmet 12283 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 14 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( *Met `  X ) )
4 simpl2 953 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  P  e.  X )
5 simpl3 954 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  Q  e.  X )
6 rexr 7683 . . 3  |-  ( R  e.  RR  ->  R  e.  RR* )
76ad2antrl 477 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR* )
8 simprl 501 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR )
9 rexadd 9476 . . . . 5  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R +e
R )  =  ( R  +  R ) )
108, 8, 9syl2anc 406 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( R  +  R ) )
118recnd 7666 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  CC )
12112timesd 8814 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
1310, 12eqtr4d 2135 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( 2  x.  R ) )
14 id 19 . . . . . 6  |-  ( R  e.  RR  ->  R  e.  RR )
15 metcl 12281 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X )  ->  ( P D Q )  e.  RR )
16 2re 8648 . . . . . . . 8  |-  2  e.  RR
17 2pos 8669 . . . . . . . 8  |-  0  <  2
1816, 17pm3.2i 268 . . . . . . 7  |-  ( 2  e.  RR  /\  0  <  2 )
19 lemuldiv2 8498 . . . . . . 7  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  R )  <_ 
( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2018, 19mp3an3 1272 . . . . . 6  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR )  -> 
( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2114, 15, 20syl2anr 286 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2221biimprd 157 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( R  <_  ( ( P D Q )  / 
2 )  ->  (
2  x.  R )  <_  ( P D Q ) ) )
2322impr 374 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  <_  ( P D Q ) )
2413, 23eqbrtrd 3895 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  <_  ( P D Q ) )
25 bldisj 12329 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  R  e. 
RR*  /\  ( R +e R )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) R ) )  =  (/) )
263, 4, 5, 7, 7, 24, 25syl33anc 1199 1  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448    i^i cin 3020   (/)c0 3310   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   RRcr 7499   0cc0 7500    + caddc 7503    x. cmul 7505   RR*cxr 7671    < clt 7672    <_ cle 7673    / cdiv 8293   2c2 8629   +ecxad 9398   *Metcxmet 11931   Metcmet 11932   ballcbl 11933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-2 8637  df-xadd 9401  df-psmet 11938  df-xmet 11939  df-met 11940  df-bl 11941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator