ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2in Unicode version

Theorem bl2in 14571
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1002 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( Met `  X ) )
2 metxmet 14523 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 14 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( *Met `  X ) )
4 simpl2 1003 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  P  e.  X )
5 simpl3 1004 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  Q  e.  X )
6 rexr 8065 . . 3  |-  ( R  e.  RR  ->  R  e.  RR* )
76ad2antrl 490 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR* )
8 simprl 529 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR )
9 rexadd 9918 . . . . 5  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R +e
R )  =  ( R  +  R ) )
108, 8, 9syl2anc 411 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( R  +  R ) )
118recnd 8048 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  CC )
12112timesd 9225 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
1310, 12eqtr4d 2229 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( 2  x.  R ) )
14 id 19 . . . . . 6  |-  ( R  e.  RR  ->  R  e.  RR )
15 metcl 14521 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X )  ->  ( P D Q )  e.  RR )
16 2re 9052 . . . . . . . 8  |-  2  e.  RR
17 2pos 9073 . . . . . . . 8  |-  0  <  2
1816, 17pm3.2i 272 . . . . . . 7  |-  ( 2  e.  RR  /\  0  <  2 )
19 lemuldiv2 8901 . . . . . . 7  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  R )  <_ 
( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2018, 19mp3an3 1337 . . . . . 6  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR )  -> 
( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2114, 15, 20syl2anr 290 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2221biimprd 158 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( R  <_  ( ( P D Q )  / 
2 )  ->  (
2  x.  R )  <_  ( P D Q ) ) )
2322impr 379 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  <_  ( P D Q ) )
2413, 23eqbrtrd 4051 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  <_  ( P D Q ) )
25 bldisj 14569 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  R  e. 
RR*  /\  ( R +e R )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) R ) )  =  (/) )
263, 4, 5, 7, 7, 24, 25syl33anc 1264 1  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    i^i cin 3152   (/)c0 3446   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872    + caddc 7875    x. cmul 7877   RR*cxr 8053    < clt 8054    <_ cle 8055    / cdiv 8691   2c2 9033   +ecxad 9836   *Metcxmet 14032   Metcmet 14033   ballcbl 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-xadd 9839  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator