ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2in Unicode version

Theorem bl2in 13043
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 990 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( Met `  X ) )
2 metxmet 12995 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 14 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( *Met `  X ) )
4 simpl2 991 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  P  e.  X )
5 simpl3 992 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  Q  e.  X )
6 rexr 7944 . . 3  |-  ( R  e.  RR  ->  R  e.  RR* )
76ad2antrl 482 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR* )
8 simprl 521 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR )
9 rexadd 9788 . . . . 5  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R +e
R )  =  ( R  +  R ) )
108, 8, 9syl2anc 409 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( R  +  R ) )
118recnd 7927 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  CC )
12112timesd 9099 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
1310, 12eqtr4d 2201 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( 2  x.  R ) )
14 id 19 . . . . . 6  |-  ( R  e.  RR  ->  R  e.  RR )
15 metcl 12993 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X )  ->  ( P D Q )  e.  RR )
16 2re 8927 . . . . . . . 8  |-  2  e.  RR
17 2pos 8948 . . . . . . . 8  |-  0  <  2
1816, 17pm3.2i 270 . . . . . . 7  |-  ( 2  e.  RR  /\  0  <  2 )
19 lemuldiv2 8777 . . . . . . 7  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  R )  <_ 
( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2018, 19mp3an3 1316 . . . . . 6  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR )  -> 
( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2114, 15, 20syl2anr 288 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2221biimprd 157 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( R  <_  ( ( P D Q )  / 
2 )  ->  (
2  x.  R )  <_  ( P D Q ) ) )
2322impr 377 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  <_  ( P D Q ) )
2413, 23eqbrtrd 4004 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  <_  ( P D Q ) )
25 bldisj 13041 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  R  e. 
RR*  /\  ( R +e R )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) R ) )  =  (/) )
263, 4, 5, 7, 7, 24, 25syl33anc 1243 1  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    i^i cin 3115   (/)c0 3409   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756    x. cmul 7758   RR*cxr 7932    < clt 7933    <_ cle 7934    / cdiv 8568   2c2 8908   +ecxad 9706   *Metcxmet 12620   Metcmet 12621   ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-xadd 9709  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator