ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2in Unicode version

Theorem bl2in 14875
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1003 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( Met `  X ) )
2 metxmet 14827 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 14 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  D  e.  ( *Met `  X ) )
4 simpl2 1004 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  P  e.  X )
5 simpl3 1005 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  Q  e.  X )
6 rexr 8118 . . 3  |-  ( R  e.  RR  ->  R  e.  RR* )
76ad2antrl 490 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR* )
8 simprl 529 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  RR )
9 rexadd 9974 . . . . 5  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R +e
R )  =  ( R  +  R ) )
108, 8, 9syl2anc 411 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( R  +  R ) )
118recnd 8101 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  ->  R  e.  CC )
12112timesd 9280 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
1310, 12eqtr4d 2241 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  =  ( 2  x.  R ) )
14 id 19 . . . . . 6  |-  ( R  e.  RR  ->  R  e.  RR )
15 metcl 14825 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X )  ->  ( P D Q )  e.  RR )
16 2re 9106 . . . . . . . 8  |-  2  e.  RR
17 2pos 9127 . . . . . . . 8  |-  0  <  2
1816, 17pm3.2i 272 . . . . . . 7  |-  ( 2  e.  RR  /\  0  <  2 )
19 lemuldiv2 8955 . . . . . . 7  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  R )  <_ 
( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2018, 19mp3an3 1339 . . . . . 6  |-  ( ( R  e.  RR  /\  ( P D Q )  e.  RR )  -> 
( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2114, 15, 20syl2anr 290 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( ( 2  x.  R )  <_  ( P D Q )  <->  R  <_  ( ( P D Q )  /  2 ) ) )
2221biimprd 158 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  R  e.  RR )  ->  ( R  <_  ( ( P D Q )  / 
2 )  ->  (
2  x.  R )  <_  ( P D Q ) ) )
2322impr 379 . . 3  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( 2  x.  R
)  <_  ( P D Q ) )
2413, 23eqbrtrd 4066 . 2  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( R +e
R )  <_  ( P D Q ) )
25 bldisj 14873 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  R  e. 
RR*  /\  ( R +e R )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) R ) )  =  (/) )
263, 4, 5, 7, 7, 24, 25syl33anc 1265 1  |-  ( ( ( D  e.  ( Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  R  <_ 
( ( P D Q )  /  2
) ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) R ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    i^i cin 3165   (/)c0 3460   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    x. cmul 7930   RR*cxr 8106    < clt 8107    <_ cle 8108    / cdiv 8745   2c2 9087   +ecxad 9892   *Metcxmet 14298   Metcmet 14299   ballcbl 14300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-2 9095  df-xadd 9895  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator