ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext Unicode version

Theorem strext 12579
Description: Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strext.c  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
Assertion
Ref Expression
strext  |-  ( ph  ->  F Struct  <. A ,  C >. )

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12490 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1010 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1010 . 2  |-  ( ph  ->  A  e.  NN )
64simp2d 1011 . . 3  |-  ( ph  ->  B  e.  NN )
7 strext.c . . 3  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
8 eluznn 9614 . . 3  |-  ( ( B  e.  NN  /\  C  e.  ( ZZ>= `  B ) )  ->  C  e.  NN )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  C  e.  NN )
105nnred 8946 . . 3  |-  ( ph  ->  A  e.  RR )
116nnred 8946 . . 3  |-  ( ph  ->  B  e.  RR )
129nnred 8946 . . 3  |-  ( ph  ->  C  e.  RR )
134simp3d 1012 . . 3  |-  ( ph  ->  A  <_  B )
14 eluzle 9554 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  B  <_  C )
157, 14syl 14 . . 3  |-  ( ph  ->  B  <_  C )
1610, 11, 12, 13, 15letrd 8095 . 2  |-  ( ph  ->  A  <_  C )
173simp2d 1011 . 2  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
18 structex 12488 . . 3  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
191, 18syl 14 . 2  |-  ( ph  ->  F  e.  _V )
203simp3d 1012 . . 3  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
21 fzss2 10078 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... C ) )
227, 21syl 14 . . 3  |-  ( ph  ->  ( A ... B
)  C_  ( A ... C ) )
2320, 22sstrd 3177 . 2  |-  ( ph  ->  dom  F  C_  ( A ... C ) )
24 isstructr 12491 . 2  |-  ( ( ( A  e.  NN  /\  C  e.  NN  /\  A  <_  C )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  _V  /\  dom  F 
C_  ( A ... C ) ) )  ->  F Struct  <. A ,  C >. )
255, 9, 16, 17, 19, 23, 24syl33anc 1263 1  |-  ( ph  ->  F Struct  <. A ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    e. wcel 2158   _Vcvv 2749    \ cdif 3138    C_ wss 3141   (/)c0 3434   {csn 3604   <.cop 3607   class class class wbr 4015   dom cdm 4638   Fun wfun 5222   ` cfv 5228  (class class class)co 5888    <_ cle 8007   NNcn 8933   ZZ>=cuz 9542   ...cfz 10022   Struct cstr 12472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-z 9268  df-uz 9543  df-fz 10023  df-struct 12478
This theorem is referenced by:  cnfldstr  13739
  Copyright terms: Public domain W3C validator