ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext Unicode version

Theorem strext 13138
Description: Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strext.c  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
Assertion
Ref Expression
strext  |-  ( ph  ->  F Struct  <. A ,  C >. )

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 13046 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1033 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1033 . 2  |-  ( ph  ->  A  e.  NN )
64simp2d 1034 . . 3  |-  ( ph  ->  B  e.  NN )
7 strext.c . . 3  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
8 eluznn 9795 . . 3  |-  ( ( B  e.  NN  /\  C  e.  ( ZZ>= `  B ) )  ->  C  e.  NN )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  C  e.  NN )
105nnred 9123 . . 3  |-  ( ph  ->  A  e.  RR )
116nnred 9123 . . 3  |-  ( ph  ->  B  e.  RR )
129nnred 9123 . . 3  |-  ( ph  ->  C  e.  RR )
134simp3d 1035 . . 3  |-  ( ph  ->  A  <_  B )
14 eluzle 9734 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  B  <_  C )
157, 14syl 14 . . 3  |-  ( ph  ->  B  <_  C )
1610, 11, 12, 13, 15letrd 8270 . 2  |-  ( ph  ->  A  <_  C )
173simp2d 1034 . 2  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
18 structex 13044 . . 3  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
191, 18syl 14 . 2  |-  ( ph  ->  F  e.  _V )
203simp3d 1035 . . 3  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
21 fzss2 10260 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... C ) )
227, 21syl 14 . . 3  |-  ( ph  ->  ( A ... B
)  C_  ( A ... C ) )
2320, 22sstrd 3234 . 2  |-  ( ph  ->  dom  F  C_  ( A ... C ) )
24 isstructr 13047 . 2  |-  ( ( ( A  e.  NN  /\  C  e.  NN  /\  A  <_  C )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  _V  /\  dom  F 
C_  ( A ... C ) ) )  ->  F Struct  <. A ,  C >. )
255, 9, 16, 17, 19, 23, 24syl33anc 1286 1  |-  ( ph  ->  F Struct  <. A ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   _Vcvv 2799    \ cdif 3194    C_ wss 3197   (/)c0 3491   {csn 3666   <.cop 3669   class class class wbr 4083   dom cdm 4719   Fun wfun 5312   ` cfv 5318  (class class class)co 6001    <_ cle 8182   NNcn 9110   ZZ>=cuz 9722   ...cfz 10204   Struct cstr 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-z 9447  df-uz 9723  df-fz 10205  df-struct 13034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator