ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext Unicode version

Theorem strext 12566
Description: Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strext.c  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
Assertion
Ref Expression
strext  |-  ( ph  ->  F Struct  <. A ,  C >. )

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12478 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1009 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1009 . 2  |-  ( ph  ->  A  e.  NN )
64simp2d 1010 . . 3  |-  ( ph  ->  B  e.  NN )
7 strext.c . . 3  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
8 eluznn 9602 . . 3  |-  ( ( B  e.  NN  /\  C  e.  ( ZZ>= `  B ) )  ->  C  e.  NN )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  C  e.  NN )
105nnred 8934 . . 3  |-  ( ph  ->  A  e.  RR )
116nnred 8934 . . 3  |-  ( ph  ->  B  e.  RR )
129nnred 8934 . . 3  |-  ( ph  ->  C  e.  RR )
134simp3d 1011 . . 3  |-  ( ph  ->  A  <_  B )
14 eluzle 9542 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  B  <_  C )
157, 14syl 14 . . 3  |-  ( ph  ->  B  <_  C )
1610, 11, 12, 13, 15letrd 8083 . 2  |-  ( ph  ->  A  <_  C )
173simp2d 1010 . 2  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
18 structex 12476 . . 3  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
191, 18syl 14 . 2  |-  ( ph  ->  F  e.  _V )
203simp3d 1011 . . 3  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
21 fzss2 10066 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... C ) )
227, 21syl 14 . . 3  |-  ( ph  ->  ( A ... B
)  C_  ( A ... C ) )
2320, 22sstrd 3167 . 2  |-  ( ph  ->  dom  F  C_  ( A ... C ) )
24 isstructr 12479 . 2  |-  ( ( ( A  e.  NN  /\  C  e.  NN  /\  A  <_  C )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  _V  /\  dom  F 
C_  ( A ... C ) ) )  ->  F Struct  <. A ,  C >. )
255, 9, 16, 17, 19, 23, 24syl33anc 1253 1  |-  ( ph  ->  F Struct  <. A ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148   _Vcvv 2739    \ cdif 3128    C_ wss 3131   (/)c0 3424   {csn 3594   <.cop 3597   class class class wbr 4005   dom cdm 4628   Fun wfun 5212   ` cfv 5218  (class class class)co 5877    <_ cle 7995   NNcn 8921   ZZ>=cuz 9530   ...cfz 10010   Struct cstr 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-z 9256  df-uz 9531  df-fz 10011  df-struct 12466
This theorem is referenced by:  cnfldstr  13542
  Copyright terms: Public domain W3C validator