ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext Unicode version

Theorem strext 12970
Description: Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strext.c  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
Assertion
Ref Expression
strext  |-  ( ph  ->  F Struct  <. A ,  C >. )

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12879 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1012 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1012 . 2  |-  ( ph  ->  A  e.  NN )
64simp2d 1013 . . 3  |-  ( ph  ->  B  e.  NN )
7 strext.c . . 3  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
8 eluznn 9723 . . 3  |-  ( ( B  e.  NN  /\  C  e.  ( ZZ>= `  B ) )  ->  C  e.  NN )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  C  e.  NN )
105nnred 9051 . . 3  |-  ( ph  ->  A  e.  RR )
116nnred 9051 . . 3  |-  ( ph  ->  B  e.  RR )
129nnred 9051 . . 3  |-  ( ph  ->  C  e.  RR )
134simp3d 1014 . . 3  |-  ( ph  ->  A  <_  B )
14 eluzle 9662 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  B  <_  C )
157, 14syl 14 . . 3  |-  ( ph  ->  B  <_  C )
1610, 11, 12, 13, 15letrd 8198 . 2  |-  ( ph  ->  A  <_  C )
173simp2d 1013 . 2  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
18 structex 12877 . . 3  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
191, 18syl 14 . 2  |-  ( ph  ->  F  e.  _V )
203simp3d 1014 . . 3  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
21 fzss2 10188 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... C ) )
227, 21syl 14 . . 3  |-  ( ph  ->  ( A ... B
)  C_  ( A ... C ) )
2320, 22sstrd 3203 . 2  |-  ( ph  ->  dom  F  C_  ( A ... C ) )
24 isstructr 12880 . 2  |-  ( ( ( A  e.  NN  /\  C  e.  NN  /\  A  <_  C )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  _V  /\  dom  F 
C_  ( A ... C ) ) )  ->  F Struct  <. A ,  C >. )
255, 9, 16, 17, 19, 23, 24syl33anc 1265 1  |-  ( ph  ->  F Struct  <. A ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    e. wcel 2176   _Vcvv 2772    \ cdif 3163    C_ wss 3166   (/)c0 3460   {csn 3633   <.cop 3636   class class class wbr 4045   dom cdm 4676   Fun wfun 5266   ` cfv 5272  (class class class)co 5946    <_ cle 8110   NNcn 9038   ZZ>=cuz 9650   ...cfz 10132   Struct cstr 12861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-z 9375  df-uz 9651  df-fz 10133  df-struct 12867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator