ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strext Unicode version

Theorem strext 12726
Description: Extending the upper range of a structure. This works because when we say that a structure has components in  A ... C we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
Hypotheses
Ref Expression
strext.f  |-  ( ph  ->  F Struct  <. A ,  B >. )
strext.c  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
Assertion
Ref Expression
strext  |-  ( ph  ->  F Struct  <. A ,  C >. )

Proof of Theorem strext
StepHypRef Expression
1 strext.f . . . . 5  |-  ( ph  ->  F Struct  <. A ,  B >. )
2 isstructim 12635 . . . . 5  |-  ( F Struct  <. A ,  B >.  -> 
( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
31, 2syl 14 . . . 4  |-  ( ph  ->  ( ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( A ... B
) ) )
43simp1d 1011 . . 3  |-  ( ph  ->  ( A  e.  NN  /\  B  e.  NN  /\  A  <_  B ) )
54simp1d 1011 . 2  |-  ( ph  ->  A  e.  NN )
64simp2d 1012 . . 3  |-  ( ph  ->  B  e.  NN )
7 strext.c . . 3  |-  ( ph  ->  C  e.  ( ZZ>= `  B ) )
8 eluznn 9668 . . 3  |-  ( ( B  e.  NN  /\  C  e.  ( ZZ>= `  B ) )  ->  C  e.  NN )
96, 7, 8syl2anc 411 . 2  |-  ( ph  ->  C  e.  NN )
105nnred 8997 . . 3  |-  ( ph  ->  A  e.  RR )
116nnred 8997 . . 3  |-  ( ph  ->  B  e.  RR )
129nnred 8997 . . 3  |-  ( ph  ->  C  e.  RR )
134simp3d 1013 . . 3  |-  ( ph  ->  A  <_  B )
14 eluzle 9607 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  B  <_  C )
157, 14syl 14 . . 3  |-  ( ph  ->  B  <_  C )
1610, 11, 12, 13, 15letrd 8145 . 2  |-  ( ph  ->  A  <_  C )
173simp2d 1012 . 2  |-  ( ph  ->  Fun  ( F  \  { (/) } ) )
18 structex 12633 . . 3  |-  ( F Struct  <. A ,  B >.  ->  F  e.  _V )
191, 18syl 14 . 2  |-  ( ph  ->  F  e.  _V )
203simp3d 1013 . . 3  |-  ( ph  ->  dom  F  C_  ( A ... B ) )
21 fzss2 10133 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( A ... B )  C_  ( A ... C ) )
227, 21syl 14 . . 3  |-  ( ph  ->  ( A ... B
)  C_  ( A ... C ) )
2320, 22sstrd 3190 . 2  |-  ( ph  ->  dom  F  C_  ( A ... C ) )
24 isstructr 12636 . 2  |-  ( ( ( A  e.  NN  /\  C  e.  NN  /\  A  <_  C )  /\  ( Fun  ( F  \  { (/) } )  /\  F  e.  _V  /\  dom  F 
C_  ( A ... C ) ) )  ->  F Struct  <. A ,  C >. )
255, 9, 16, 17, 19, 23, 24syl33anc 1264 1  |-  ( ph  ->  F Struct  <. A ,  C >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    e. wcel 2164   _Vcvv 2760    \ cdif 3151    C_ wss 3154   (/)c0 3447   {csn 3619   <.cop 3622   class class class wbr 4030   dom cdm 4660   Fun wfun 5249   ` cfv 5255  (class class class)co 5919    <_ cle 8057   NNcn 8984   ZZ>=cuz 9595   ...cfz 10077   Struct cstr 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-z 9321  df-uz 9596  df-fz 10078  df-struct 12623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator