Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl13anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
syl13anc.5 |
Ref | Expression |
---|---|
syl13anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 | |
2 | sylXanc.2 | . . 3 | |
3 | sylXanc.3 | . . 3 | |
4 | sylXanc.4 | . . 3 | |
5 | 2, 3, 4 | 3jca 1177 | . 2 |
6 | syl13anc.5 | . 2 | |
7 | 1, 5, 6 | syl2anc 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl23anc 1245 syl33anc 1253 caovassd 6024 caovcand 6027 caovordid 6031 caovordd 6033 caovdid 6040 caovdird 6043 swoer 6553 swoord1 6554 swoord2 6555 fimax2gtrilemstep 6890 iunfidisj 6935 ssfii 6963 suplub2ti 6990 prarloclem3 7471 fzosubel3 10164 seq3split 10447 seq3caopr 10451 zsumdc 11358 fsumiun 11451 divalglemex 11892 pcgcd1 12292 strle1g 12519 mnd32g 12692 mnd12g 12693 mnd4g 12694 ismndd 12702 mndinvmod 12707 grpasscan2 12793 grpidrcan 12794 grpidlcan 12795 grpinvinv 12796 grplmulf1o 12803 grpinvssd 12806 grpinvadd 12807 grpsubrcan 12810 grpsubadd 12817 grpaddsubass 12819 grppncan 12820 grpsubsub4 12822 grppnpcan2 12823 grpnpncan 12824 grpnpncan0 12825 grpnnncan2 12826 dfgrp3mlem 12827 dfgrp3m 12828 grplactcnv 12831 mhmmnd 12839 mulgaddcomlem 12864 mulgaddcom 12865 mulgnn0dir 12871 mulgdirlem 12872 mulgneg2 12875 mulgnnass 12876 mulgnn0ass 12877 mulgass 12878 mulgmodid 12880 abl32 12906 abladdsub4 12913 abladdsub 12914 ablpncan2 12915 ablsubsub 12917 srgass 12947 srgmulgass 12965 srgpcomp 12966 srgpcompp 12967 srgpcomppsc 12968 ringass 12992 ringadd2 13003 rngo2times 13004 ringcom 13006 ringlz 13014 ringrz 13015 ringnegl 13020 rngnegr 13021 ringmneg1 13022 ringmneg2 13023 ringsubdi 13025 rngsubdir 13026 mulgass2 13027 psmetsym 13380 psmettri 13381 psmetge0 13382 psmetres2 13384 xmetge0 13416 xmetsym 13419 xmettri 13423 metrtri 13428 xmetres2 13430 bldisj 13452 xblss2ps 13455 xblss2 13456 xmeter 13487 xmetxp 13558 |
Copyright terms: Public domain | W3C validator |