ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blhalf Unicode version

Theorem blhalf 15076
Description: A ball of radius  R  / 
2 is contained in a ball of radius  R centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 527 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  M  e.  ( *Met `  X ) )
2 simplr 528 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Y  e.  X )
3 simprr 531 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) )
4 simprl 529 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  RR )
54rehalfcld 9354 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  RR )
65rexrd 8192 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e. 
RR* )
7 elbl 15059 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  ( R  /  2
)  e.  RR* )  ->  ( Z  e.  ( Y ( ball `  M
) ( R  / 
2 ) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
81, 2, 6, 7syl3anc 1271 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  ( Y
( ball `  M )
( R  /  2
) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
93, 8mpbid 147 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  X  /\  ( Y M Z )  <  ( R  / 
2 ) ) )
109simpld 112 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  X )
11 xmetcl 15020 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y M Z )  e.  RR* )
121, 2, 10, 11syl3anc 1271 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  e. 
RR* )
139simprd 114 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  < 
( R  /  2
) )
1412, 6, 13xrltled 9991 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  /  2
) )
155recnd 8171 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  CC )
1615, 15pncand 8454 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  / 
2 ) )
174recnd 8171 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  CC )
18172halvesd 9353 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( R  /  2
)  +  ( R  /  2 ) )  =  R )
1918oveq1d 6015 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  -  ( R  /  2
) ) )
2016, 19eqtr3d 2264 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  =  ( R  -  ( R  /  2 ) ) )
2114, 20breqtrd 4108 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) )
22 blss2 15075 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  Z  e.  X
)  /\  ( ( R  /  2 )  e.  RR  /\  R  e.  RR  /\  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
231, 2, 10, 5, 4, 21, 22syl33anc 1286 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200    C_ wss 3197   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RRcr 7994    + caddc 7998   RR*cxr 8176    < clt 8177    <_ cle 8178    - cmin 8313    / cdiv 8815   2c2 9157   *Metcxmet 14494   ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-2 9165  df-xneg 9964  df-xadd 9965  df-psmet 14501  df-xmet 14502  df-bl 14504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator