ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blhalf Unicode version

Theorem blhalf 13993
Description: A ball of radius  R  / 
2 is contained in a ball of radius  R centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 527 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  M  e.  ( *Met `  X ) )
2 simplr 528 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Y  e.  X )
3 simprr 531 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) )
4 simprl 529 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  RR )
54rehalfcld 9167 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  RR )
65rexrd 8009 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e. 
RR* )
7 elbl 13976 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  ( R  /  2
)  e.  RR* )  ->  ( Z  e.  ( Y ( ball `  M
) ( R  / 
2 ) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
81, 2, 6, 7syl3anc 1238 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  ( Y
( ball `  M )
( R  /  2
) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
93, 8mpbid 147 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  X  /\  ( Y M Z )  <  ( R  / 
2 ) ) )
109simpld 112 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  X )
11 xmetcl 13937 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y M Z )  e.  RR* )
121, 2, 10, 11syl3anc 1238 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  e. 
RR* )
139simprd 114 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  < 
( R  /  2
) )
1412, 6, 13xrltled 9801 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  /  2
) )
155recnd 7988 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  CC )
1615, 15pncand 8271 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  / 
2 ) )
174recnd 7988 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  CC )
18172halvesd 9166 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( R  /  2
)  +  ( R  /  2 ) )  =  R )
1918oveq1d 5892 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  -  ( R  /  2
) ) )
2016, 19eqtr3d 2212 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  =  ( R  -  ( R  /  2 ) ) )
2114, 20breqtrd 4031 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) )
22 blss2 13992 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  Z  e.  X
)  /\  ( ( R  /  2 )  e.  RR  /\  R  e.  RR  /\  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
231, 2, 10, 5, 4, 21, 22syl33anc 1253 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    C_ wss 3131   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812    + caddc 7816   RR*cxr 7993    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   2c2 8972   *Metcxmet 13525   ballcbl 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-2 8980  df-xneg 9774  df-xadd 9775  df-psmet 13532  df-xmet 13533  df-bl 13535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator