ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blhalf Unicode version

Theorem blhalf 12878
Description: A ball of radius  R  / 
2 is contained in a ball of radius  R centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 519 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  M  e.  ( *Met `  X ) )
2 simplr 520 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Y  e.  X )
3 simprr 522 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) )
4 simprl 521 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  RR )
54rehalfcld 9084 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  RR )
65rexrd 7929 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e. 
RR* )
7 elbl 12861 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  ( R  /  2
)  e.  RR* )  ->  ( Z  e.  ( Y ( ball `  M
) ( R  / 
2 ) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
81, 2, 6, 7syl3anc 1220 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  ( Y
( ball `  M )
( R  /  2
) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
93, 8mpbid 146 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  X  /\  ( Y M Z )  <  ( R  / 
2 ) ) )
109simpld 111 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  X )
11 xmetcl 12822 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y M Z )  e.  RR* )
121, 2, 10, 11syl3anc 1220 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  e. 
RR* )
139simprd 113 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  < 
( R  /  2
) )
1412, 6, 13xrltled 9712 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  /  2
) )
155recnd 7908 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  CC )
1615, 15pncand 8191 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  / 
2 ) )
174recnd 7908 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  CC )
18172halvesd 9083 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( R  /  2
)  +  ( R  /  2 ) )  =  R )
1918oveq1d 5841 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  -  ( R  /  2
) ) )
2016, 19eqtr3d 2192 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  =  ( R  -  ( R  /  2 ) ) )
2114, 20breqtrd 3992 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) )
22 blss2 12877 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  Z  e.  X
)  /\  ( ( R  /  2 )  e.  RR  /\  R  e.  RR  /\  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
231, 2, 10, 5, 4, 21, 22syl33anc 1235 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128    C_ wss 3102   class class class wbr 3967   ` cfv 5172  (class class class)co 5826   RRcr 7733    + caddc 7737   RR*cxr 7913    < clt 7914    <_ cle 7915    - cmin 8050    / cdiv 8549   2c2 8889   *Metcxmet 12450   ballcbl 12452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-map 6597  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-2 8897  df-xneg 9685  df-xadd 9686  df-psmet 12457  df-xmet 12458  df-bl 12460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator