Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnptopco | Unicode version |
Description: The composition of a function continuous at with a function continuous at is continuous at . Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
cnptopco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 996 | . . . . 5 | |
2 | toptopon2 12770 | . . . . 5 TopOn | |
3 | 1, 2 | sylib 121 | . . . 4 TopOn |
4 | simpl3 997 | . . . . 5 | |
5 | toptopon2 12770 | . . . . 5 TopOn | |
6 | 4, 5 | sylib 121 | . . . 4 TopOn |
7 | simprr 527 | . . . 4 | |
8 | cnpf2 12960 | . . . 4 TopOn TopOn | |
9 | 3, 6, 7, 8 | syl3anc 1233 | . . 3 |
10 | simpl1 995 | . . . . 5 | |
11 | toptopon2 12770 | . . . . 5 TopOn | |
12 | 10, 11 | sylib 121 | . . . 4 TopOn |
13 | simprl 526 | . . . 4 | |
14 | cnpf2 12960 | . . . 4 TopOn TopOn | |
15 | 12, 3, 13, 14 | syl3anc 1233 | . . 3 |
16 | fco 5361 | . . 3 | |
17 | 9, 15, 16 | syl2anc 409 | . 2 |
18 | 3 | adantr 274 | . . . . . 6 TopOn |
19 | 6 | adantr 274 | . . . . . 6 TopOn |
20 | cnprcl2k 12959 | . . . . . . . . 9 TopOn | |
21 | 12, 1, 13, 20 | syl3anc 1233 | . . . . . . . 8 |
22 | 15, 21 | ffvelrnd 5629 | . . . . . . 7 |
23 | 22 | adantr 274 | . . . . . 6 |
24 | 7 | adantr 274 | . . . . . 6 |
25 | simprl 526 | . . . . . 6 | |
26 | fvco3 5565 | . . . . . . . . 9 | |
27 | 15, 21, 26 | syl2anc 409 | . . . . . . . 8 |
28 | 27 | adantr 274 | . . . . . . 7 |
29 | simprr 527 | . . . . . . 7 | |
30 | 28, 29 | eqeltrrd 2248 | . . . . . 6 |
31 | icnpimaex 12964 | . . . . . 6 TopOn TopOn | |
32 | 18, 19, 23, 24, 25, 30, 31 | syl33anc 1248 | . . . . 5 |
33 | 12 | ad2antrr 485 | . . . . . . 7 TopOn |
34 | 3 | ad2antrr 485 | . . . . . . 7 TopOn |
35 | 21 | ad2antrr 485 | . . . . . . 7 |
36 | simplll 528 | . . . . . . . 8 | |
37 | 36 | adantlll 477 | . . . . . . 7 |
38 | simprl 526 | . . . . . . 7 | |
39 | simprrl 534 | . . . . . . 7 | |
40 | icnpimaex 12964 | . . . . . . 7 TopOn TopOn | |
41 | 33, 34, 35, 37, 38, 39, 40 | syl33anc 1248 | . . . . . 6 |
42 | imaco 5114 | . . . . . . . . . . 11 | |
43 | imass2 4985 | . . . . . . . . . . 11 | |
44 | 42, 43 | eqsstrid 3193 | . . . . . . . . . 10 |
45 | simprrr 535 | . . . . . . . . . 10 | |
46 | sstr2 3154 | . . . . . . . . . 10 | |
47 | 44, 45, 46 | syl2imc 39 | . . . . . . . . 9 |
48 | 47 | adantlll 477 | . . . . . . . 8 |
49 | 48 | anim2d 335 | . . . . . . 7 |
50 | 49 | reximdv 2571 | . . . . . 6 |
51 | 41, 50 | mpd 13 | . . . . 5 |
52 | 32, 51 | rexlimddv 2592 | . . . 4 |
53 | 52 | expr 373 | . . 3 |
54 | 53 | ralrimiva 2543 | . 2 |
55 | iscnp 12952 | . . 3 TopOn TopOn | |
56 | 12, 6, 21, 55 | syl3anc 1233 | . 2 |
57 | 17, 54, 56 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 cuni 3794 cima 4612 ccom 4613 wf 5192 cfv 5196 (class class class)co 5850 ctop 12748 TopOnctopon 12761 ccnp 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-map 6624 df-top 12749 df-topon 12762 df-cnp 12942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |