ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 Unicode version

Theorem sylan9 407
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1  |-  ( ph  ->  ( ps  ->  ch ) )
sylan9.2  |-  ( th 
->  ( ch  ->  ta ) )
Assertion
Ref Expression
sylan9  |-  ( (
ph  /\  th )  ->  ( ps  ->  ta ) )

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
2 sylan9.2 . . 3  |-  ( th 
->  ( ch  ->  ta ) )
31, 2syl9 72 . 2  |-  ( ph  ->  ( th  ->  ( ps  ->  ta ) ) )
43imp 123 1  |-  ( (
ph  /\  th )  ->  ( ps  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  sbequi  1832  rspc2  2845  rspc3v  2850  copsexg  4229  chfnrn  5607  ffnfv  5654  f1elima  5752  smoel2  6282  th3q  6618  fiintim  6906  addnnnq0  7411  mulnnnq0  7412  addsrpr  7707  mulsrpr  7708  cau3lem  11078  rescncf  13362
  Copyright terms: Public domain W3C validator