![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9 | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl9 72 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | imp 123 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: sbequi 1778 rspc2 2754 rspc3v 2759 copsexg 4104 chfnrn 5463 ffnfv 5510 f1elima 5606 smoel2 6130 th3q 6464 fiintim 6746 addnnnq0 7158 mulnnnq0 7159 addsrpr 7441 mulsrpr 7442 cau3lem 10726 rescncf 12481 |
Copyright terms: Public domain | W3C validator |