ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9 Unicode version

Theorem sylan9 404
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1  |-  ( ph  ->  ( ps  ->  ch ) )
sylan9.2  |-  ( th 
->  ( ch  ->  ta ) )
Assertion
Ref Expression
sylan9  |-  ( (
ph  /\  th )  ->  ( ps  ->  ta ) )

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
2 sylan9.2 . . 3  |-  ( th 
->  ( ch  ->  ta ) )
31, 2syl9 72 . 2  |-  ( ph  ->  ( th  ->  ( ps  ->  ta ) ) )
43imp 123 1  |-  ( (
ph  /\  th )  ->  ( ps  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  sbequi  1778  rspc2  2754  rspc3v  2759  copsexg  4104  chfnrn  5463  ffnfv  5510  f1elima  5606  smoel2  6130  th3q  6464  fiintim  6746  addnnnq0  7158  mulnnnq0  7159  addsrpr  7441  mulsrpr  7442  cau3lem  10726  rescncf  12481
  Copyright terms: Public domain W3C validator