Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffnfv | Unicode version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . . 3 | |
2 | ffvelrn 5629 | . . . 4 | |
3 | 2 | ralrimiva 2543 | . . 3 |
4 | 1, 3 | jca 304 | . 2 |
5 | simpl 108 | . . 3 | |
6 | fvelrnb 5544 | . . . . . 6 | |
7 | 6 | biimpd 143 | . . . . 5 |
8 | nfra1 2501 | . . . . . 6 | |
9 | nfv 1521 | . . . . . 6 | |
10 | rsp 2517 | . . . . . . 7 | |
11 | eleq1 2233 | . . . . . . . 8 | |
12 | 11 | biimpcd 158 | . . . . . . 7 |
13 | 10, 12 | syl6 33 | . . . . . 6 |
14 | 8, 9, 13 | rexlimd 2584 | . . . . 5 |
15 | 7, 14 | sylan9 407 | . . . 4 |
16 | 15 | ssrdv 3153 | . . 3 |
17 | df-f 5202 | . . 3 | |
18 | 5, 16, 17 | sylanbrc 415 | . 2 |
19 | 4, 18 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 crn 4612 wfn 5193 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: ffnfvf 5655 fnfvrnss 5656 fmpt2d 5658 ffnov 5957 elixpconst 6684 elixpsn 6713 ctssdccl 7088 cnref1o 9609 shftf 10794 eff2 11643 reeff1 11663 1arith 12319 dvfre 13468 ioocosf1o 13569 012of 14028 2o01f 14029 |
Copyright terms: Public domain | W3C validator |