ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfv Unicode version

Theorem ffnfv 5676
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
ffnfv  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5367 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 ffvelcdm 5651 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
32ralrimiva 2550 . . 3  |-  ( F : A --> B  ->  A. x  e.  A  ( F `  x )  e.  B )
41, 3jca 306 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
5 simpl 109 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F  Fn  A )
6 fvelrnb 5565 . . . . . 6  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
76biimpd 144 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
8 nfra1 2508 . . . . . 6  |-  F/ x A. x  e.  A  ( F `  x )  e.  B
9 nfv 1528 . . . . . 6  |-  F/ x  y  e.  B
10 rsp 2524 . . . . . . 7  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  ( F `  x )  e.  B ) )
11 eleq1 2240 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  B  <->  y  e.  B ) )
1211biimpcd 159 . . . . . . 7  |-  ( ( F `  x )  e.  B  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) )
1310, 12syl6 33 . . . . . 6  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) ) )
148, 9, 13rexlimd 2591 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  y  e.  B ) )
157, 14sylan9 409 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( y  e.  ran  F  ->  y  e.  B
) )
1615ssrdv 3163 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
17 df-f 5222 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
185, 16, 17sylanbrc 417 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> B )
194, 18impbii 126 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   ran crn 4629    Fn wfn 5213   -->wf 5214   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  ffnfvf  5677  fnfvrnss  5678  fmpt2d  5680  ffnov  5981  elixpconst  6708  elixpsn  6737  ctssdccl  7112  cnref1o  9652  shftf  10841  eff2  11690  reeff1  11710  1arith  12367  ptex  12718  xpscf  12771  mgpf  13199  dvfre  14259  ioocosf1o  14360  012of  14830  2o01f  14831
  Copyright terms: Public domain W3C validator