ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfv Unicode version

Theorem ffnfv 5720
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
ffnfv  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5407 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 ffvelcdm 5695 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
32ralrimiva 2570 . . 3  |-  ( F : A --> B  ->  A. x  e.  A  ( F `  x )  e.  B )
41, 3jca 306 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
5 simpl 109 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F  Fn  A )
6 fvelrnb 5608 . . . . . 6  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
76biimpd 144 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
8 nfra1 2528 . . . . . 6  |-  F/ x A. x  e.  A  ( F `  x )  e.  B
9 nfv 1542 . . . . . 6  |-  F/ x  y  e.  B
10 rsp 2544 . . . . . . 7  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  ( F `  x )  e.  B ) )
11 eleq1 2259 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  B  <->  y  e.  B ) )
1211biimpcd 159 . . . . . . 7  |-  ( ( F `  x )  e.  B  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) )
1310, 12syl6 33 . . . . . 6  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) ) )
148, 9, 13rexlimd 2611 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  y  e.  B ) )
157, 14sylan9 409 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( y  e.  ran  F  ->  y  e.  B
) )
1615ssrdv 3189 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
17 df-f 5262 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
185, 16, 17sylanbrc 417 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> B )
194, 18impbii 126 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   ran crn 4664    Fn wfn 5253   -->wf 5254   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  ffnfvf  5721  fnfvrnss  5722  fmpt2d  5724  ffnov  6026  elixpconst  6765  elixpsn  6794  ctssdccl  7177  cnref1o  9725  iswrdsymb  10953  shftf  10995  eff2  11845  reeff1  11865  1arith  12536  ptex  12935  xpscf  12990  rngmgpf  13493  mgpf  13567  dvfre  14946  ioocosf1o  15090  012of  15640  2o01f  15641
  Copyright terms: Public domain W3C validator