| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnfv | Unicode version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 |
. . 3
| |
| 2 | ffvelcdm 5768 |
. . . 4
| |
| 3 | 2 | ralrimiva 2603 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | simpl 109 |
. . 3
| |
| 6 | fvelrnb 5681 |
. . . . . 6
| |
| 7 | 6 | biimpd 144 |
. . . . 5
|
| 8 | nfra1 2561 |
. . . . . 6
| |
| 9 | nfv 1574 |
. . . . . 6
| |
| 10 | rsp 2577 |
. . . . . . 7
| |
| 11 | eleq1 2292 |
. . . . . . . 8
| |
| 12 | 11 | biimpcd 159 |
. . . . . . 7
|
| 13 | 10, 12 | syl6 33 |
. . . . . 6
|
| 14 | 8, 9, 13 | rexlimd 2645 |
. . . . 5
|
| 15 | 7, 14 | sylan9 409 |
. . . 4
|
| 16 | 15 | ssrdv 3230 |
. . 3
|
| 17 | df-f 5322 |
. . 3
| |
| 18 | 5, 16, 17 | sylanbrc 417 |
. 2
|
| 19 | 4, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: ffnfvf 5794 fnfvrnss 5795 fmpt2d 5797 ffnov 6108 elixpconst 6853 elixpsn 6882 ctssdccl 7278 cnref1o 9846 iswrdsymb 11089 ccatrn 11144 shftf 11341 eff2 12191 reeff1 12211 1arith 12890 ptex 13297 xpscf 13380 rngmgpf 13900 mgpf 13974 dvfre 15384 ioocosf1o 15528 012of 16357 2o01f 16358 |
| Copyright terms: Public domain | W3C validator |