| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnfv | Unicode version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5407 |
. . 3
| |
| 2 | ffvelcdm 5695 |
. . . 4
| |
| 3 | 2 | ralrimiva 2570 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | simpl 109 |
. . 3
| |
| 6 | fvelrnb 5608 |
. . . . . 6
| |
| 7 | 6 | biimpd 144 |
. . . . 5
|
| 8 | nfra1 2528 |
. . . . . 6
| |
| 9 | nfv 1542 |
. . . . . 6
| |
| 10 | rsp 2544 |
. . . . . . 7
| |
| 11 | eleq1 2259 |
. . . . . . . 8
| |
| 12 | 11 | biimpcd 159 |
. . . . . . 7
|
| 13 | 10, 12 | syl6 33 |
. . . . . 6
|
| 14 | 8, 9, 13 | rexlimd 2611 |
. . . . 5
|
| 15 | 7, 14 | sylan9 409 |
. . . 4
|
| 16 | 15 | ssrdv 3189 |
. . 3
|
| 17 | df-f 5262 |
. . 3
| |
| 18 | 5, 16, 17 | sylanbrc 417 |
. 2
|
| 19 | 4, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 |
| This theorem is referenced by: ffnfvf 5721 fnfvrnss 5722 fmpt2d 5724 ffnov 6026 elixpconst 6765 elixpsn 6794 ctssdccl 7177 cnref1o 9725 iswrdsymb 10953 shftf 10995 eff2 11845 reeff1 11865 1arith 12536 ptex 12935 xpscf 12990 rngmgpf 13493 mgpf 13567 dvfre 14946 ioocosf1o 15090 012of 15640 2o01f 15641 |
| Copyright terms: Public domain | W3C validator |