ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfv Unicode version

Theorem ffnfv 5717
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
ffnfv  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5404 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 ffvelcdm 5692 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
32ralrimiva 2567 . . 3  |-  ( F : A --> B  ->  A. x  e.  A  ( F `  x )  e.  B )
41, 3jca 306 . 2  |-  ( F : A --> B  -> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
5 simpl 109 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F  Fn  A )
6 fvelrnb 5605 . . . . . 6  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
76biimpd 144 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
8 nfra1 2525 . . . . . 6  |-  F/ x A. x  e.  A  ( F `  x )  e.  B
9 nfv 1539 . . . . . 6  |-  F/ x  y  e.  B
10 rsp 2541 . . . . . . 7  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  ( F `  x )  e.  B ) )
11 eleq1 2256 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  B  <->  y  e.  B ) )
1211biimpcd 159 . . . . . . 7  |-  ( ( F `  x )  e.  B  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) )
1310, 12syl6 33 . . . . . 6  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( x  e.  A  ->  (
( F `  x
)  =  y  -> 
y  e.  B ) ) )
148, 9, 13rexlimd 2608 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  B  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  y  e.  B ) )
157, 14sylan9 409 . . . 4  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  -> 
( y  e.  ran  F  ->  y  e.  B
) )
1615ssrdv 3186 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
17 df-f 5259 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
185, 16, 17sylanbrc 417 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  F : A --> B )
194, 18impbii 126 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3154   ran crn 4661    Fn wfn 5250   -->wf 5251   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  ffnfvf  5718  fnfvrnss  5719  fmpt2d  5721  ffnov  6023  elixpconst  6762  elixpsn  6791  ctssdccl  7172  cnref1o  9719  iswrdsymb  10935  shftf  10977  eff2  11826  reeff1  11846  1arith  12508  ptex  12878  xpscf  12933  rngmgpf  13436  mgpf  13510  dvfre  14889  ioocosf1o  15030  012of  15556  2o01f  15557
  Copyright terms: Public domain W3C validator