| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > th3q | Unicode version | ||
| Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| th3q.1 |
|
| th3q.2 |
|
| th3q.4 |
|
| th3q.5 |
|
| Ref | Expression |
|---|---|
| th3q |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4696 |
. . . 4
| |
| 2 | th3q.1 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6657 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4696 |
. . . 4
| |
| 6 | 2 | ecelqsi 6657 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2196 |
. . . 4
| |
| 10 | eqid 2196 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2196 |
. . 3
| |
| 13 | opeq12 3811 |
. . . . . 6
| |
| 14 | eceq1 6636 |
. . . . . . . . 9
| |
| 15 | 14 | eqeq2d 2208 |
. . . . . . . 8
|
| 16 | 15 | anbi1d 465 |
. . . . . . 7
|
| 17 | oveq1 5932 |
. . . . . . . . 9
| |
| 18 | 17 | eceq1d 6637 |
. . . . . . . 8
|
| 19 | 18 | eqeq2d 2208 |
. . . . . . 7
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 13, 20 | syl 14 |
. . . . 5
|
| 22 | 21 | spc2egv 2854 |
. . . 4
|
| 23 | opeq12 3811 |
. . . . . . 7
| |
| 24 | eceq1 6636 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq2d 2208 |
. . . . . . . . 9
|
| 26 | 25 | anbi2d 464 |
. . . . . . . 8
|
| 27 | oveq2 5933 |
. . . . . . . . . 10
| |
| 28 | 27 | eceq1d 6637 |
. . . . . . . . 9
|
| 29 | 28 | eqeq2d 2208 |
. . . . . . . 8
|
| 30 | 26, 29 | anbi12d 473 |
. . . . . . 7
|
| 31 | 23, 30 | syl 14 |
. . . . . 6
|
| 32 | 31 | spc2egv 2854 |
. . . . 5
|
| 33 | 32 | 2eximdv 1896 |
. . . 4
|
| 34 | 22, 33 | sylan9 409 |
. . 3
|
| 35 | 11, 12, 34 | mp2ani 432 |
. 2
|
| 36 | ecexg 6605 |
. . . 4
| |
| 37 | 2, 36 | ax-mp 5 |
. . 3
|
| 38 | eqeq1 2203 |
. . . . . . . 8
| |
| 39 | eqeq1 2203 |
. . . . . . . 8
| |
| 40 | 38, 39 | bi2anan9 606 |
. . . . . . 7
|
| 41 | eqeq1 2203 |
. . . . . . 7
| |
| 42 | 40, 41 | bi2anan9 606 |
. . . . . 6
|
| 43 | 42 | 3impa 1196 |
. . . . 5
|
| 44 | 43 | 4exbidv 1884 |
. . . 4
|
| 45 | th3q.2 |
. . . . 5
| |
| 46 | th3q.4 |
. . . . 5
| |
| 47 | 2, 45, 46 | th3qlem2 6706 |
. . . 4
|
| 48 | th3q.5 |
. . . 4
| |
| 49 | 44, 47, 48 | ovig 6048 |
. . 3
|
| 50 | 37, 49 | mp3an3 1337 |
. 2
|
| 51 | 8, 35, 50 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-er 6601 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: oviec 6709 |
| Copyright terms: Public domain | W3C validator |