| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > th3q | Unicode version | ||
| Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| th3q.1 | 
 | 
| th3q.2 | 
 | 
| th3q.4 | 
 | 
| th3q.5 | 
 | 
| Ref | Expression | 
|---|---|
| th3q | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxpi 4695 | 
. . . 4
 | |
| 2 | th3q.1 | 
. . . . 5
 | |
| 3 | 2 | ecelqsi 6648 | 
. . . 4
 | 
| 4 | 1, 3 | syl 14 | 
. . 3
 | 
| 5 | opelxpi 4695 | 
. . . 4
 | |
| 6 | 2 | ecelqsi 6648 | 
. . . 4
 | 
| 7 | 5, 6 | syl 14 | 
. . 3
 | 
| 8 | 4, 7 | anim12i 338 | 
. 2
 | 
| 9 | eqid 2196 | 
. . . 4
 | |
| 10 | eqid 2196 | 
. . . 4
 | |
| 11 | 9, 10 | pm3.2i 272 | 
. . 3
 | 
| 12 | eqid 2196 | 
. . 3
 | |
| 13 | opeq12 3810 | 
. . . . . 6
 | |
| 14 | eceq1 6627 | 
. . . . . . . . 9
 | |
| 15 | 14 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 16 | 15 | anbi1d 465 | 
. . . . . . 7
 | 
| 17 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 18 | 17 | eceq1d 6628 | 
. . . . . . . 8
 | 
| 19 | 18 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 20 | 16, 19 | anbi12d 473 | 
. . . . . 6
 | 
| 21 | 13, 20 | syl 14 | 
. . . . 5
 | 
| 22 | 21 | spc2egv 2854 | 
. . . 4
 | 
| 23 | opeq12 3810 | 
. . . . . . 7
 | |
| 24 | eceq1 6627 | 
. . . . . . . . . 10
 | |
| 25 | 24 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 26 | 25 | anbi2d 464 | 
. . . . . . . 8
 | 
| 27 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 28 | 27 | eceq1d 6628 | 
. . . . . . . . 9
 | 
| 29 | 28 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 30 | 26, 29 | anbi12d 473 | 
. . . . . . 7
 | 
| 31 | 23, 30 | syl 14 | 
. . . . . 6
 | 
| 32 | 31 | spc2egv 2854 | 
. . . . 5
 | 
| 33 | 32 | 2eximdv 1896 | 
. . . 4
 | 
| 34 | 22, 33 | sylan9 409 | 
. . 3
 | 
| 35 | 11, 12, 34 | mp2ani 432 | 
. 2
 | 
| 36 | ecexg 6596 | 
. . . 4
 | |
| 37 | 2, 36 | ax-mp 5 | 
. . 3
 | 
| 38 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 39 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 40 | 38, 39 | bi2anan9 606 | 
. . . . . . 7
 | 
| 41 | eqeq1 2203 | 
. . . . . . 7
 | |
| 42 | 40, 41 | bi2anan9 606 | 
. . . . . 6
 | 
| 43 | 42 | 3impa 1196 | 
. . . . 5
 | 
| 44 | 43 | 4exbidv 1884 | 
. . . 4
 | 
| 45 | th3q.2 | 
. . . . 5
 | |
| 46 | th3q.4 | 
. . . . 5
 | |
| 47 | 2, 45, 46 | th3qlem2 6697 | 
. . . 4
 | 
| 48 | th3q.5 | 
. . . 4
 | |
| 49 | 44, 47, 48 | ovig 6044 | 
. . 3
 | 
| 50 | 37, 49 | mp3an3 1337 | 
. 2
 | 
| 51 | 8, 35, 50 | sylc 62 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-er 6592 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: oviec 6700 | 
| Copyright terms: Public domain | W3C validator |