| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > th3q | Unicode version | ||
| Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| th3q.1 |
|
| th3q.2 |
|
| th3q.4 |
|
| th3q.5 |
|
| Ref | Expression |
|---|---|
| th3q |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4725 |
. . . 4
| |
| 2 | th3q.1 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6699 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4725 |
. . . 4
| |
| 6 | 2 | ecelqsi 6699 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2207 |
. . . 4
| |
| 10 | eqid 2207 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2207 |
. . 3
| |
| 13 | opeq12 3835 |
. . . . . 6
| |
| 14 | eceq1 6678 |
. . . . . . . . 9
| |
| 15 | 14 | eqeq2d 2219 |
. . . . . . . 8
|
| 16 | 15 | anbi1d 465 |
. . . . . . 7
|
| 17 | oveq1 5974 |
. . . . . . . . 9
| |
| 18 | 17 | eceq1d 6679 |
. . . . . . . 8
|
| 19 | 18 | eqeq2d 2219 |
. . . . . . 7
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 13, 20 | syl 14 |
. . . . 5
|
| 22 | 21 | spc2egv 2870 |
. . . 4
|
| 23 | opeq12 3835 |
. . . . . . 7
| |
| 24 | eceq1 6678 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq2d 2219 |
. . . . . . . . 9
|
| 26 | 25 | anbi2d 464 |
. . . . . . . 8
|
| 27 | oveq2 5975 |
. . . . . . . . . 10
| |
| 28 | 27 | eceq1d 6679 |
. . . . . . . . 9
|
| 29 | 28 | eqeq2d 2219 |
. . . . . . . 8
|
| 30 | 26, 29 | anbi12d 473 |
. . . . . . 7
|
| 31 | 23, 30 | syl 14 |
. . . . . 6
|
| 32 | 31 | spc2egv 2870 |
. . . . 5
|
| 33 | 32 | 2eximdv 1906 |
. . . 4
|
| 34 | 22, 33 | sylan9 409 |
. . 3
|
| 35 | 11, 12, 34 | mp2ani 432 |
. 2
|
| 36 | ecexg 6647 |
. . . 4
| |
| 37 | 2, 36 | ax-mp 5 |
. . 3
|
| 38 | eqeq1 2214 |
. . . . . . . 8
| |
| 39 | eqeq1 2214 |
. . . . . . . 8
| |
| 40 | 38, 39 | bi2anan9 606 |
. . . . . . 7
|
| 41 | eqeq1 2214 |
. . . . . . 7
| |
| 42 | 40, 41 | bi2anan9 606 |
. . . . . 6
|
| 43 | 42 | 3impa 1197 |
. . . . 5
|
| 44 | 43 | 4exbidv 1894 |
. . . 4
|
| 45 | th3q.2 |
. . . . 5
| |
| 46 | th3q.4 |
. . . . 5
| |
| 47 | 2, 45, 46 | th3qlem2 6748 |
. . . 4
|
| 48 | th3q.5 |
. . . 4
| |
| 49 | 44, 47, 48 | ovig 6090 |
. . 3
|
| 50 | 37, 49 | mp3an3 1339 |
. 2
|
| 51 | 8, 35, 50 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-er 6643 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: oviec 6751 |
| Copyright terms: Public domain | W3C validator |