Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > th3q | Unicode version |
Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
th3q.1 | |
th3q.2 | |
th3q.4 | |
th3q.5 |
Ref | Expression |
---|---|
th3q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4643 | . . . 4 | |
2 | th3q.1 | . . . . 5 | |
3 | 2 | ecelqsi 6567 | . . . 4 |
4 | 1, 3 | syl 14 | . . 3 |
5 | opelxpi 4643 | . . . 4 | |
6 | 2 | ecelqsi 6567 | . . . 4 |
7 | 5, 6 | syl 14 | . . 3 |
8 | 4, 7 | anim12i 336 | . 2 |
9 | eqid 2170 | . . . 4 | |
10 | eqid 2170 | . . . 4 | |
11 | 9, 10 | pm3.2i 270 | . . 3 |
12 | eqid 2170 | . . 3 | |
13 | opeq12 3767 | . . . . . 6 | |
14 | eceq1 6548 | . . . . . . . . 9 | |
15 | 14 | eqeq2d 2182 | . . . . . . . 8 |
16 | 15 | anbi1d 462 | . . . . . . 7 |
17 | oveq1 5860 | . . . . . . . . 9 | |
18 | 17 | eceq1d 6549 | . . . . . . . 8 |
19 | 18 | eqeq2d 2182 | . . . . . . 7 |
20 | 16, 19 | anbi12d 470 | . . . . . 6 |
21 | 13, 20 | syl 14 | . . . . 5 |
22 | 21 | spc2egv 2820 | . . . 4 |
23 | opeq12 3767 | . . . . . . 7 | |
24 | eceq1 6548 | . . . . . . . . . 10 | |
25 | 24 | eqeq2d 2182 | . . . . . . . . 9 |
26 | 25 | anbi2d 461 | . . . . . . . 8 |
27 | oveq2 5861 | . . . . . . . . . 10 | |
28 | 27 | eceq1d 6549 | . . . . . . . . 9 |
29 | 28 | eqeq2d 2182 | . . . . . . . 8 |
30 | 26, 29 | anbi12d 470 | . . . . . . 7 |
31 | 23, 30 | syl 14 | . . . . . 6 |
32 | 31 | spc2egv 2820 | . . . . 5 |
33 | 32 | 2eximdv 1875 | . . . 4 |
34 | 22, 33 | sylan9 407 | . . 3 |
35 | 11, 12, 34 | mp2ani 430 | . 2 |
36 | ecexg 6517 | . . . 4 | |
37 | 2, 36 | ax-mp 5 | . . 3 |
38 | eqeq1 2177 | . . . . . . . 8 | |
39 | eqeq1 2177 | . . . . . . . 8 | |
40 | 38, 39 | bi2anan9 601 | . . . . . . 7 |
41 | eqeq1 2177 | . . . . . . 7 | |
42 | 40, 41 | bi2anan9 601 | . . . . . 6 |
43 | 42 | 3impa 1189 | . . . . 5 |
44 | 43 | 4exbidv 1863 | . . . 4 |
45 | th3q.2 | . . . . 5 | |
46 | th3q.4 | . . . . 5 | |
47 | 2, 45, 46 | th3qlem2 6616 | . . . 4 |
48 | th3q.5 | . . . 4 | |
49 | 44, 47, 48 | ovig 5974 | . . 3 |
50 | 37, 49 | mp3an3 1321 | . 2 |
51 | 8, 35, 50 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 cxp 4609 (class class class)co 5853 coprab 5854 wer 6510 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: oviec 6619 |
Copyright terms: Public domain | W3C validator |