| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > th3q | Unicode version | ||
| Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| th3q.1 |
|
| th3q.2 |
|
| th3q.4 |
|
| th3q.5 |
|
| Ref | Expression |
|---|---|
| th3q |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4751 |
. . . 4
| |
| 2 | th3q.1 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6736 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4751 |
. . . 4
| |
| 6 | 2 | ecelqsi 6736 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2229 |
. . . 4
| |
| 10 | eqid 2229 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2229 |
. . 3
| |
| 13 | opeq12 3859 |
. . . . . 6
| |
| 14 | eceq1 6715 |
. . . . . . . . 9
| |
| 15 | 14 | eqeq2d 2241 |
. . . . . . . 8
|
| 16 | 15 | anbi1d 465 |
. . . . . . 7
|
| 17 | oveq1 6008 |
. . . . . . . . 9
| |
| 18 | 17 | eceq1d 6716 |
. . . . . . . 8
|
| 19 | 18 | eqeq2d 2241 |
. . . . . . 7
|
| 20 | 16, 19 | anbi12d 473 |
. . . . . 6
|
| 21 | 13, 20 | syl 14 |
. . . . 5
|
| 22 | 21 | spc2egv 2893 |
. . . 4
|
| 23 | opeq12 3859 |
. . . . . . 7
| |
| 24 | eceq1 6715 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq2d 2241 |
. . . . . . . . 9
|
| 26 | 25 | anbi2d 464 |
. . . . . . . 8
|
| 27 | oveq2 6009 |
. . . . . . . . . 10
| |
| 28 | 27 | eceq1d 6716 |
. . . . . . . . 9
|
| 29 | 28 | eqeq2d 2241 |
. . . . . . . 8
|
| 30 | 26, 29 | anbi12d 473 |
. . . . . . 7
|
| 31 | 23, 30 | syl 14 |
. . . . . 6
|
| 32 | 31 | spc2egv 2893 |
. . . . 5
|
| 33 | 32 | 2eximdv 1928 |
. . . 4
|
| 34 | 22, 33 | sylan9 409 |
. . 3
|
| 35 | 11, 12, 34 | mp2ani 432 |
. 2
|
| 36 | ecexg 6684 |
. . . 4
| |
| 37 | 2, 36 | ax-mp 5 |
. . 3
|
| 38 | eqeq1 2236 |
. . . . . . . 8
| |
| 39 | eqeq1 2236 |
. . . . . . . 8
| |
| 40 | 38, 39 | bi2anan9 608 |
. . . . . . 7
|
| 41 | eqeq1 2236 |
. . . . . . 7
| |
| 42 | 40, 41 | bi2anan9 608 |
. . . . . 6
|
| 43 | 42 | 3impa 1218 |
. . . . 5
|
| 44 | 43 | 4exbidv 1916 |
. . . 4
|
| 45 | th3q.2 |
. . . . 5
| |
| 46 | th3q.4 |
. . . . 5
| |
| 47 | 2, 45, 46 | th3qlem2 6785 |
. . . 4
|
| 48 | th3q.5 |
. . . 4
| |
| 49 | 44, 47, 48 | ovig 6126 |
. . 3
|
| 50 | 37, 49 | mp3an3 1360 |
. 2
|
| 51 | 8, 35, 50 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-er 6680 df-ec 6682 df-qs 6686 |
| This theorem is referenced by: oviec 6788 |
| Copyright terms: Public domain | W3C validator |