ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3q Unicode version

Theorem th3q 6694
Description: Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
th3q.1  |-  .~  e.  _V
th3q.2  |-  .~  Er  ( S  X.  S
)
th3q.4  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
th3q.5  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
Assertion
Ref Expression
th3q  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  G [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )
Distinct variable groups:    x, y, z, w, v, u, t, s, f, g, h, 
.~    x, S, y, z, w, v, u, t, s, f, g, h   
x, A, y, z, w, v, u, t, s, f    x, B, y, z, w, v, u, t, s, f   
x, C, y, z, w, v, u, t   
x, D, y, z, w, v, u, t   
x,  .+ , y, z, w, v, u, t, s, f, g, h
Allowed substitution hints:    A( g, h)    B( g, h)    C( f,
g, h, s)    D( f, g, h, s)    G( x, y, z, w, v, u, t, f, g, h, s)

Proof of Theorem th3q
StepHypRef Expression
1 opelxpi 4691 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
2 th3q.1 . . . . 5  |-  .~  e.  _V
32ecelqsi 6643 . . . 4  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  ->  [ <. A ,  B >. ]  .~  e.  ( ( S  X.  S ) /.  .~  ) )
41, 3syl 14 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  ->  [ <. A ,  B >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )
)
5 opelxpi 4691 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
62ecelqsi 6643 . . . 4  |-  ( <. C ,  D >.  e.  ( S  X.  S
)  ->  [ <. C ,  D >. ]  .~  e.  ( ( S  X.  S ) /.  .~  ) )
75, 6syl 14 . . 3  |-  ( ( C  e.  S  /\  D  e.  S )  ->  [ <. C ,  D >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )
)
84, 7anim12i 338 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  e.  ( ( S  X.  S ) /.  .~  )  /\  [ <. C ,  D >. ]  .~  e.  ( ( S  X.  S ) /.  .~  ) ) )
9 eqid 2193 . . . 4  |-  [ <. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~
10 eqid 2193 . . . 4  |-  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~
119, 10pm3.2i 272 . . 3  |-  ( [
<. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )
12 eqid 2193 . . 3  |-  [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~
13 opeq12 3806 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
14 eceq1 6622 . . . . . . . . 9  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  [ <. w ,  v >. ]  .~  =  [ <. A ,  B >. ]  .~  )
1514eqeq2d 2205 . . . . . . . 8  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  <->  [ <. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  ) )
1615anbi1d 465 . . . . . . 7  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  <->  ( [ <. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  ) ) )
17 oveq1 5925 . . . . . . . . 9  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( <. w ,  v >.  .+  <. C ,  D >. )  =  ( <. A ,  B >.  .+  <. C ,  D >. ) )
1817eceq1d 6623 . . . . . . . 8  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  [ ( <.
w ,  v >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )
1918eqeq2d 2205 . . . . . . 7  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. C ,  D >. ) ]  .~  <->  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )
)
2016, 19anbi12d 473 . . . . . 6  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  ) ) )
2113, 20syl 14 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  ) ) )
2221spc2egv 2850 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( ( [
<. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )  ->  E. w E. v
( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. C ,  D >. ) ]  .~  )
) )
23 opeq12 3806 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
24 eceq1 6622 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  [ <. u ,  t >. ]  .~  =  [ <. C ,  D >. ]  .~  )
2524eqeq2d 2205 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( [ <. C ,  D >. ]  .~  =  [ <. u ,  t
>. ]  .~  <->  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  ) )
2625anbi2d 464 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  <->  ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  ) ) )
27 oveq2 5926 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( <. w ,  v >.  .+  <. u ,  t >. )  =  ( <. w ,  v >.  .+  <. C ,  D >. )
)
2827eceq1d 6623 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  [ ( <.
w ,  v >.  .+  <. u ,  t
>. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  )
2928eqeq2d 2205 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  <->  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. C ,  D >. ) ]  .~  )
)
3026, 29anbi12d 473 . . . . . . 7  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t
>. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  ) ) )
3123, 30syl 14 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  ) ) )
3231spc2egv 2850 . . . . 5  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ( ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  )  ->  E. u E. t ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  ) ) )
33322eximdv 1893 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. C ,  D >. ) ]  .~  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  ) ) )
3422, 33sylan9 409 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( [
<. A ,  B >. ]  .~  =  [ <. A ,  B >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. C ,  D >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) )
3511, 12, 34mp2ani 432 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
36 ecexg 6591 . . . 4  |-  (  .~  e.  _V  ->  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  e.  _V )
372, 36ax-mp 5 . . 3  |-  [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  e.  _V
38 eqeq1 2200 . . . . . . . 8  |-  ( x  =  [ <. A ,  B >. ]  .~  ->  ( x  =  [ <. w ,  v >. ]  .~  <->  [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  ) )
39 eqeq1 2200 . . . . . . . 8  |-  ( y  =  [ <. C ,  D >. ]  .~  ->  ( y  =  [ <. u ,  t >. ]  .~  <->  [
<. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  ) )
4038, 39bi2anan9 606 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  .~  /\  y  =  [ <. C ,  D >. ]  .~  )  ->  ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  ) 
<->  ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  ) ) )
41 eqeq1 2200 . . . . . . 7  |-  ( z  =  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  ->  (
z  =  [ (
<. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  <->  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
4240, 41bi2anan9 606 . . . . . 6  |-  ( ( ( x  =  [ <. A ,  B >. ]  .~  /\  y  =  [ <. C ,  D >. ]  .~  )  /\  z  =  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  )  -> 
( ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) )
43423impa 1196 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  .~  /\  y  =  [ <. C ,  D >. ]  .~  /\  z  =  [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  )  -> 
( ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )  <->  ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) )
44434exbidv 1881 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  .~  /\  y  =  [ <. C ,  D >. ]  .~  /\  z  =  [ (
<. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  )  -> 
( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )  <->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) )
45 th3q.2 . . . . 5  |-  .~  Er  ( S  X.  S
)
46 th3q.4 . . . . 5  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
472, 45, 46th3qlem2 6692 . . . 4  |-  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
)
48 th3q.5 . . . 4  |-  G  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
) }
4944, 47, 48ovig 6040 . . 3  |-  ( ( [ <. A ,  B >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )  /\  [ <. C ,  D >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )  /\  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  e.  _V )  ->  ( E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  .~  =  [ <. w ,  v
>. ]  .~  /\  [ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )  ->  ( [ <. A ,  B >. ]  .~  G [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  ) )
5037, 49mp3an3 1337 . 2  |-  ( ( [ <. A ,  B >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )  /\  [ <. C ,  D >. ]  .~  e.  ( ( S  X.  S
) /.  .~  )
)  ->  ( E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  .~  =  [ <. w ,  v >. ]  .~  /\ 
[ <. C ,  D >. ]  .~  =  [ <. u ,  t >. ]  .~  )  /\  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  )  ->  ( [ <. A ,  B >. ]  .~  G [ <. C ,  D >. ]  .~  )  =  [
( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )
)
518, 35, 50sylc 62 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  G [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   <.cop 3621   class class class wbr 4029    X. cxp 4657  (class class class)co 5918   {coprab 5919    Er wer 6584   [cec 6585   /.cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-er 6587  df-ec 6589  df-qs 6593
This theorem is referenced by:  oviec  6695
  Copyright terms: Public domain W3C validator