ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr Unicode version

Theorem addsrpr 7707
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )

Proof of Theorem addsrpr
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4643 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
2 enrex 7699 . . . . 5  |-  ~R  e.  _V
32ecelqsi 6567 . . . 4  |-  ( <. A ,  B >.  e.  ( P.  X.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
41, 3syl 14 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
5 opelxpi 4643 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  -> 
<. C ,  D >.  e.  ( P.  X.  P. ) )
62ecelqsi 6567 . . . 4  |-  ( <. C ,  D >.  e.  ( P.  X.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
75, 6syl 14 . . 3  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
84, 7anim12i 336 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
9 eqid 2170 . . . 4  |-  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R
10 eqid 2170 . . . 4  |-  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R
119, 10pm3.2i 270 . . 3  |-  ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
12 eqid 2170 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R
13 opeq12 3767 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6549 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. A ,  B >. ]  ~R  )
1514eqeq2d 2182 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  ) )
1615anbi1d 462 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
17 simpl 108 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5868 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  +P.  C
)  =  ( A  +P.  C ) )
19 simpr 109 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5868 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  +P.  D
)  =  ( B  +P.  D ) )
2118, 20opeq12d 3773 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( w  +P.  C
) ,  ( v  +P.  D ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
2221eceq1d 6549 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
2322eqeq2d 2182 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
)
2416, 23anbi12d 470 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  ) ) )
2524spc2egv 2820 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
26 opeq12 3767 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2726eceq1d 6549 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
2827eqeq2d 2182 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
2928anbi2d 461 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
30 simpl 108 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3130oveq2d 5869 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  +P.  u
)  =  ( w  +P.  C ) )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5869 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  +P.  t
)  =  ( v  +P.  D ) )
3431, 33opeq12d 3773 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( w  +P.  u
) ,  ( v  +P.  t ) >.  =  <. ( w  +P.  C ) ,  ( v  +P.  D ) >.
)
3534eceq1d 6549 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  =  [ <. ( w  +P.  C
) ,  ( v  +P.  D ) >. ]  ~R  )
3635eqeq2d 2182 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) )
3729, 36anbi12d 470 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
3837spc2egv 2820 . . . . 5  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
39382eximdv 1875 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
4025, 39sylan9 407 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( (
( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
4111, 12, 40mp2ani 430 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
42 ecexg 6517 . . . 4  |-  (  ~R  e.  _V  ->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  e.  _V )
432, 42ax-mp 5 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  e.  _V
44 simp1 992 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  x  =  [ <. A ,  B >. ]  ~R  )
4544eqeq1d 2179 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( x  =  [ <. w ,  v >. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  ) )
46 simp2 993 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  y  =  [ <. C ,  D >. ]  ~R  )
4746eqeq1d 2179 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( y  =  [ <. u ,  t >. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) )
4845, 47anbi12d 470 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  <->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) ) )
49 simp3 994 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
5049eqeq1d 2179 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
5148, 50anbi12d 470 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  )  /\  [
<. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
52514exbidv 1863 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
53 addsrmo 7705 . . . 4  |-  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
54 df-plr 7690 . . . . 5  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
55 df-nr 7689 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5655eleq2i 2237 . . . . . . . 8  |-  ( x  e.  R.  <->  x  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5755eleq2i 2237 . . . . . . . 8  |-  ( y  e.  R.  <->  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5856, 57anbi12i 457 . . . . . . 7  |-  ( ( x  e.  R.  /\  y  e.  R. )  <->  ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
) )
5958anbi1i 455 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  <->  ( (
x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
6059oprabbii 5908 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6154, 60eqtri 2191 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6252, 53, 61ovig 5974 . . 3  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  e.  _V )  ->  ( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
6343, 62mp3an3 1321 . 2  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
648, 41, 63sylc 62 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   <.cop 3586    X. cxp 4609  (class class class)co 5853   {coprab 5854   [cec 6511   /.cqs 6512   P.cnp 7253    +P. cpp 7255    ~R cer 7258   R.cnr 7259    +R cplr 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-enr 7688  df-nr 7689  df-plr 7690
This theorem is referenced by:  addclsr  7715  addcomsrg  7717  addasssrg  7718  distrsrg  7721  m1p1sr  7722  0idsr  7729  ltasrg  7732  prsradd  7748  pitonnlem2  7809
  Copyright terms: Public domain W3C validator