| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addsrpr | Unicode version | ||
| Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| addsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4725 |
. . . 4
| |
| 2 | enrex 7885 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6699 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4725 |
. . . 4
| |
| 6 | 2 | ecelqsi 6699 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2207 |
. . . 4
| |
| 10 | eqid 2207 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2207 |
. . 3
| |
| 13 | opeq12 3835 |
. . . . . . . . 9
| |
| 14 | 13 | eceq1d 6679 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2219 |
. . . . . . 7
|
| 16 | 15 | anbi1d 465 |
. . . . . 6
|
| 17 | simpl 109 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 5982 |
. . . . . . . . 9
|
| 19 | simpr 110 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5982 |
. . . . . . . . 9
|
| 21 | 18, 20 | opeq12d 3841 |
. . . . . . . 8
|
| 22 | 21 | eceq1d 6679 |
. . . . . . 7
|
| 23 | 22 | eqeq2d 2219 |
. . . . . 6
|
| 24 | 16, 23 | anbi12d 473 |
. . . . 5
|
| 25 | 24 | spc2egv 2870 |
. . . 4
|
| 26 | opeq12 3835 |
. . . . . . . . . 10
| |
| 27 | 26 | eceq1d 6679 |
. . . . . . . . 9
|
| 28 | 27 | eqeq2d 2219 |
. . . . . . . 8
|
| 29 | 28 | anbi2d 464 |
. . . . . . 7
|
| 30 | simpl 109 |
. . . . . . . . . . 11
| |
| 31 | 30 | oveq2d 5983 |
. . . . . . . . . 10
|
| 32 | simpr 110 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 5983 |
. . . . . . . . . 10
|
| 34 | 31, 33 | opeq12d 3841 |
. . . . . . . . 9
|
| 35 | 34 | eceq1d 6679 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2219 |
. . . . . . 7
|
| 37 | 29, 36 | anbi12d 473 |
. . . . . 6
|
| 38 | 37 | spc2egv 2870 |
. . . . 5
|
| 39 | 38 | 2eximdv 1906 |
. . . 4
|
| 40 | 25, 39 | sylan9 409 |
. . 3
|
| 41 | 11, 12, 40 | mp2ani 432 |
. 2
|
| 42 | ecexg 6647 |
. . . 4
| |
| 43 | 2, 42 | ax-mp 5 |
. . 3
|
| 44 | simp1 1000 |
. . . . . . . 8
| |
| 45 | 44 | eqeq1d 2216 |
. . . . . . 7
|
| 46 | simp2 1001 |
. . . . . . . 8
| |
| 47 | 46 | eqeq1d 2216 |
. . . . . . 7
|
| 48 | 45, 47 | anbi12d 473 |
. . . . . 6
|
| 49 | simp3 1002 |
. . . . . . 7
| |
| 50 | 49 | eqeq1d 2216 |
. . . . . 6
|
| 51 | 48, 50 | anbi12d 473 |
. . . . 5
|
| 52 | 51 | 4exbidv 1894 |
. . . 4
|
| 53 | addsrmo 7891 |
. . . 4
| |
| 54 | df-plr 7876 |
. . . . 5
| |
| 55 | df-nr 7875 |
. . . . . . . . 9
| |
| 56 | 55 | eleq2i 2274 |
. . . . . . . 8
|
| 57 | 55 | eleq2i 2274 |
. . . . . . . 8
|
| 58 | 56, 57 | anbi12i 460 |
. . . . . . 7
|
| 59 | 58 | anbi1i 458 |
. . . . . 6
|
| 60 | 59 | oprabbii 6023 |
. . . . 5
|
| 61 | 54, 60 | eqtri 2228 |
. . . 4
|
| 62 | 52, 53, 61 | ovig 6090 |
. . 3
|
| 63 | 43, 62 | mp3an3 1339 |
. 2
|
| 64 | 8, 41, 63 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-enr 7874 df-nr 7875 df-plr 7876 |
| This theorem is referenced by: addclsr 7901 addcomsrg 7903 addasssrg 7904 distrsrg 7907 m1p1sr 7908 0idsr 7915 ltasrg 7918 prsradd 7934 pitonnlem2 7995 |
| Copyright terms: Public domain | W3C validator |