ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr Unicode version

Theorem addsrpr 7858
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )

Proof of Theorem addsrpr
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4707 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
2 enrex 7850 . . . . 5  |-  ~R  e.  _V
32ecelqsi 6676 . . . 4  |-  ( <. A ,  B >.  e.  ( P.  X.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
41, 3syl 14 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
5 opelxpi 4707 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  -> 
<. C ,  D >.  e.  ( P.  X.  P. ) )
62ecelqsi 6676 . . . 4  |-  ( <. C ,  D >.  e.  ( P.  X.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
75, 6syl 14 . . 3  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
84, 7anim12i 338 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
9 eqid 2205 . . . 4  |-  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R
10 eqid 2205 . . . 4  |-  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R
119, 10pm3.2i 272 . . 3  |-  ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
12 eqid 2205 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R
13 opeq12 3821 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6656 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. A ,  B >. ]  ~R  )
1514eqeq2d 2217 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  ) )
1615anbi1d 465 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
17 simpl 109 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5959 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  +P.  C
)  =  ( A  +P.  C ) )
19 simpr 110 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5959 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  +P.  D
)  =  ( B  +P.  D ) )
2118, 20opeq12d 3827 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( w  +P.  C
) ,  ( v  +P.  D ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
2221eceq1d 6656 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
2322eqeq2d 2217 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
)
2416, 23anbi12d 473 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  ) ) )
2524spc2egv 2863 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
26 opeq12 3821 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2726eceq1d 6656 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
2827eqeq2d 2217 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
2928anbi2d 464 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
30 simpl 109 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3130oveq2d 5960 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  +P.  u
)  =  ( w  +P.  C ) )
32 simpr 110 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5960 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  +P.  t
)  =  ( v  +P.  D ) )
3431, 33opeq12d 3827 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( w  +P.  u
) ,  ( v  +P.  t ) >.  =  <. ( w  +P.  C ) ,  ( v  +P.  D ) >.
)
3534eceq1d 6656 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  =  [ <. ( w  +P.  C
) ,  ( v  +P.  D ) >. ]  ~R  )
3635eqeq2d 2217 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) )
3729, 36anbi12d 473 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
3837spc2egv 2863 . . . . 5  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
39382eximdv 1905 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
4025, 39sylan9 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( (
( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
4111, 12, 40mp2ani 432 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
42 ecexg 6624 . . . 4  |-  (  ~R  e.  _V  ->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  e.  _V )
432, 42ax-mp 5 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  e.  _V
44 simp1 1000 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  x  =  [ <. A ,  B >. ]  ~R  )
4544eqeq1d 2214 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( x  =  [ <. w ,  v >. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  ) )
46 simp2 1001 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  y  =  [ <. C ,  D >. ]  ~R  )
4746eqeq1d 2214 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( y  =  [ <. u ,  t >. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) )
4845, 47anbi12d 473 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  <->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) ) )
49 simp3 1002 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
5049eqeq1d 2214 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
5148, 50anbi12d 473 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  )  /\  [
<. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
52514exbidv 1893 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
53 addsrmo 7856 . . . 4  |-  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
54 df-plr 7841 . . . . 5  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
55 df-nr 7840 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5655eleq2i 2272 . . . . . . . 8  |-  ( x  e.  R.  <->  x  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5755eleq2i 2272 . . . . . . . 8  |-  ( y  e.  R.  <->  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5856, 57anbi12i 460 . . . . . . 7  |-  ( ( x  e.  R.  /\  y  e.  R. )  <->  ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
) )
5958anbi1i 458 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  <->  ( (
x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
6059oprabbii 6000 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6154, 60eqtri 2226 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6252, 53, 61ovig 6067 . . 3  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  e.  _V )  ->  ( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
6343, 62mp3an3 1339 . 2  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
648, 41, 63sylc 62 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636    X. cxp 4673  (class class class)co 5944   {coprab 5945   [cec 6618   /.cqs 6619   P.cnp 7404    +P. cpp 7406    ~R cer 7409   R.cnr 7410    +R cplr 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-enr 7839  df-nr 7840  df-plr 7841
This theorem is referenced by:  addclsr  7866  addcomsrg  7868  addasssrg  7869  distrsrg  7872  m1p1sr  7873  0idsr  7880  ltasrg  7883  prsradd  7899  pitonnlem2  7960
  Copyright terms: Public domain W3C validator