ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrpr Unicode version

Theorem addsrpr 7517
Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
addsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )

Proof of Theorem addsrpr
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4539 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
2 enrex 7509 . . . . 5  |-  ~R  e.  _V
32ecelqsi 6449 . . . 4  |-  ( <. A ,  B >.  e.  ( P.  X.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
41, 3syl 14 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
5 opelxpi 4539 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  -> 
<. C ,  D >.  e.  ( P.  X.  P. ) )
62ecelqsi 6449 . . . 4  |-  ( <. C ,  D >.  e.  ( P.  X.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
75, 6syl 14 . . 3  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
84, 7anim12i 334 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
9 eqid 2115 . . . 4  |-  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R
10 eqid 2115 . . . 4  |-  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R
119, 10pm3.2i 268 . . 3  |-  ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
12 eqid 2115 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R
13 opeq12 3675 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6431 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. A ,  B >. ]  ~R  )
1514eqeq2d 2127 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  ) )
1615anbi1d 458 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
17 simpl 108 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5755 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  +P.  C
)  =  ( A  +P.  C ) )
19 simpr 109 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5755 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  +P.  D
)  =  ( B  +P.  D ) )
2118, 20opeq12d 3681 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( w  +P.  C
) ,  ( v  +P.  D ) >.  =  <. ( A  +P.  C ) ,  ( B  +P.  D ) >.
)
2221eceq1d 6431 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
2322eqeq2d 2127 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
)
2416, 23anbi12d 462 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  ) ) )
2524spc2egv 2747 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
26 opeq12 3675 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2726eceq1d 6431 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
2827eqeq2d 2127 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
2928anbi2d 457 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
30 simpl 108 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3130oveq2d 5756 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  +P.  u
)  =  ( w  +P.  C ) )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5756 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  +P.  t
)  =  ( v  +P.  D ) )
3431, 33opeq12d 3681 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( w  +P.  u
) ,  ( v  +P.  t ) >.  =  <. ( w  +P.  C ) ,  ( v  +P.  D ) >.
)
3534eceq1d 6431 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  =  [ <. ( w  +P.  C
) ,  ( v  +P.  D ) >. ]  ~R  )
3635eqeq2d 2127 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) )
3729, 36anbi12d 462 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P.  D ) >. ]  ~R  ) ) )
3837spc2egv 2747 . . . . 5  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
39382eximdv 1836 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  C ) ,  ( v  +P. 
D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
4025, 39sylan9 404 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( (
( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
4111, 12, 40mp2ani 426 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
42 ecexg 6399 . . . 4  |-  (  ~R  e.  _V  ->  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  e.  _V )
432, 42ax-mp 5 . . 3  |-  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  e.  _V
44 simp1 964 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  x  =  [ <. A ,  B >. ]  ~R  )
4544eqeq1d 2124 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( x  =  [ <. w ,  v >. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  ) )
46 simp2 965 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  y  =  [ <. C ,  D >. ]  ~R  )
4746eqeq1d 2124 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( y  =  [ <. u ,  t >. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) )
4845, 47anbi12d 462 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  <->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) ) )
49 simp3 966 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
5049eqeq1d 2124 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  <->  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
5148, 50anbi12d 462 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  )  /\  [
<. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
52514exbidv 1824 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )  ->  ( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) 
<->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  ) ) )
53 addsrmo 7515 . . . 4  |-  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )
54 df-plr 7500 . . . . 5  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
55 df-nr 7499 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5655eleq2i 2182 . . . . . . . 8  |-  ( x  e.  R.  <->  x  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5755eleq2i 2182 . . . . . . . 8  |-  ( y  e.  R.  <->  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)
5856, 57anbi12i 453 . . . . . . 7  |-  ( ( x  e.  R.  /\  y  e.  R. )  <->  ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
) )
5958anbi1i 451 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) )  <->  ( (
x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w  +P.  u
) ,  ( v  +P.  t ) >. ]  ~R  ) ) )
6059oprabbii 5792 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6154, 60eqtri 2136 . . . 4  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  t ) >. ]  ~R  ) ) }
6252, 53, 61ovig 5858 . . 3  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  e.  _V )  ->  ( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
6343, 62mp3an3 1287 . 2  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  =  [ <. ( w  +P.  u ) ,  ( v  +P.  t )
>. ]  ~R  )  -> 
( [ <. A ,  B >. ]  ~R  +R  [
<. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C
) ,  ( B  +P.  D ) >. ]  ~R  ) )
648, 41, 63sylc 62 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D
) >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2658   <.cop 3498    X. cxp 4505  (class class class)co 5740   {coprab 5741   [cec 6393   /.cqs 6394   P.cnp 7063    +P. cpp 7065    ~R cer 7068   R.cnr 7069    +R cplr 7073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-1nqqs 7123  df-rq 7124  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-0nq0 7198  df-plq0 7199  df-mq0 7200  df-inp 7238  df-iplp 7240  df-enr 7498  df-nr 7499  df-plr 7500
This theorem is referenced by:  addclsr  7525  addcomsrg  7527  addasssrg  7528  distrsrg  7531  m1p1sr  7532  0idsr  7539  ltasrg  7542  prsradd  7558  pitonnlem2  7619
  Copyright terms: Public domain W3C validator