| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addsrpr | Unicode version | ||
| Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| addsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4695 |
. . . 4
| |
| 2 | enrex 7804 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6648 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4695 |
. . . 4
| |
| 6 | 2 | ecelqsi 6648 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2196 |
. . . 4
| |
| 10 | eqid 2196 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2196 |
. . 3
| |
| 13 | opeq12 3810 |
. . . . . . . . 9
| |
| 14 | 13 | eceq1d 6628 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2208 |
. . . . . . 7
|
| 16 | 15 | anbi1d 465 |
. . . . . 6
|
| 17 | simpl 109 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 5937 |
. . . . . . . . 9
|
| 19 | simpr 110 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5937 |
. . . . . . . . 9
|
| 21 | 18, 20 | opeq12d 3816 |
. . . . . . . 8
|
| 22 | 21 | eceq1d 6628 |
. . . . . . 7
|
| 23 | 22 | eqeq2d 2208 |
. . . . . 6
|
| 24 | 16, 23 | anbi12d 473 |
. . . . 5
|
| 25 | 24 | spc2egv 2854 |
. . . 4
|
| 26 | opeq12 3810 |
. . . . . . . . . 10
| |
| 27 | 26 | eceq1d 6628 |
. . . . . . . . 9
|
| 28 | 27 | eqeq2d 2208 |
. . . . . . . 8
|
| 29 | 28 | anbi2d 464 |
. . . . . . 7
|
| 30 | simpl 109 |
. . . . . . . . . . 11
| |
| 31 | 30 | oveq2d 5938 |
. . . . . . . . . 10
|
| 32 | simpr 110 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 5938 |
. . . . . . . . . 10
|
| 34 | 31, 33 | opeq12d 3816 |
. . . . . . . . 9
|
| 35 | 34 | eceq1d 6628 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2208 |
. . . . . . 7
|
| 37 | 29, 36 | anbi12d 473 |
. . . . . 6
|
| 38 | 37 | spc2egv 2854 |
. . . . 5
|
| 39 | 38 | 2eximdv 1896 |
. . . 4
|
| 40 | 25, 39 | sylan9 409 |
. . 3
|
| 41 | 11, 12, 40 | mp2ani 432 |
. 2
|
| 42 | ecexg 6596 |
. . . 4
| |
| 43 | 2, 42 | ax-mp 5 |
. . 3
|
| 44 | simp1 999 |
. . . . . . . 8
| |
| 45 | 44 | eqeq1d 2205 |
. . . . . . 7
|
| 46 | simp2 1000 |
. . . . . . . 8
| |
| 47 | 46 | eqeq1d 2205 |
. . . . . . 7
|
| 48 | 45, 47 | anbi12d 473 |
. . . . . 6
|
| 49 | simp3 1001 |
. . . . . . 7
| |
| 50 | 49 | eqeq1d 2205 |
. . . . . 6
|
| 51 | 48, 50 | anbi12d 473 |
. . . . 5
|
| 52 | 51 | 4exbidv 1884 |
. . . 4
|
| 53 | addsrmo 7810 |
. . . 4
| |
| 54 | df-plr 7795 |
. . . . 5
| |
| 55 | df-nr 7794 |
. . . . . . . . 9
| |
| 56 | 55 | eleq2i 2263 |
. . . . . . . 8
|
| 57 | 55 | eleq2i 2263 |
. . . . . . . 8
|
| 58 | 56, 57 | anbi12i 460 |
. . . . . . 7
|
| 59 | 58 | anbi1i 458 |
. . . . . 6
|
| 60 | 59 | oprabbii 5977 |
. . . . 5
|
| 61 | 54, 60 | eqtri 2217 |
. . . 4
|
| 62 | 52, 53, 61 | ovig 6044 |
. . 3
|
| 63 | 43, 62 | mp3an3 1337 |
. 2
|
| 64 | 8, 41, 63 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iplp 7535 df-enr 7793 df-nr 7794 df-plr 7795 |
| This theorem is referenced by: addclsr 7820 addcomsrg 7822 addasssrg 7823 distrsrg 7826 m1p1sr 7827 0idsr 7834 ltasrg 7837 prsradd 7853 pitonnlem2 7914 |
| Copyright terms: Public domain | W3C validator |