ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel2 Unicode version

Theorem smoel2 6361
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5357 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
21eleq2d 2266 . . . . 5  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
32anbi1d 465 . . . 4  |-  ( F  Fn  A  ->  (
( B  e.  dom  F  /\  C  e.  B
)  <->  ( B  e.  A  /\  C  e.  B ) ) )
43biimprd 158 . . 3  |-  ( F  Fn  A  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( B  e.  dom  F  /\  C  e.  B ) ) )
5 smoel 6358 . . . 4  |-  ( ( Smo  F  /\  B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C )  e.  ( F `  B
) )
653expib 1208 . . 3  |-  ( Smo 
F  ->  ( ( B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C
)  e.  ( F `
 B ) ) )
74, 6sylan9 409 . 2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( F `  C )  e.  ( F `  B ) ) )
87imp 124 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   dom cdm 4663    Fn wfn 5253   ` cfv 5258   Smo wsmo 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-tr 4132  df-iord 4401  df-iota 5219  df-fn 5261  df-fv 5266  df-smo 6344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator