ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel2 Unicode version

Theorem smoel2 6282
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5297 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
21eleq2d 2240 . . . . 5  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
32anbi1d 462 . . . 4  |-  ( F  Fn  A  ->  (
( B  e.  dom  F  /\  C  e.  B
)  <->  ( B  e.  A  /\  C  e.  B ) ) )
43biimprd 157 . . 3  |-  ( F  Fn  A  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( B  e.  dom  F  /\  C  e.  B ) ) )
5 smoel 6279 . . . 4  |-  ( ( Smo  F  /\  B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C )  e.  ( F `  B
) )
653expib 1201 . . 3  |-  ( Smo 
F  ->  ( ( B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C
)  e.  ( F `
 B ) ) )
74, 6sylan9 407 . 2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( F `  C )  e.  ( F `  B ) ) )
87imp 123 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   dom cdm 4611    Fn wfn 5193   ` cfv 5198   Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-tr 4088  df-iord 4351  df-iota 5160  df-fn 5201  df-fv 5206  df-smo 6265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator