| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rescncf | Unicode version | ||
| Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| rescncf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | cncfrss 15047 |
. . . . . . . 8
| |
| 3 | 2 | adantl 277 |
. . . . . . 7
|
| 4 | cncfrss2 15048 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | elcncf 15045 |
. . . . . . 7
| |
| 7 | 3, 5, 6 | syl2anc 411 |
. . . . . 6
|
| 8 | 1, 7 | mpbid 147 |
. . . . 5
|
| 9 | 8 | simpld 112 |
. . . 4
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | 9, 10 | fssresd 5452 |
. . 3
|
| 12 | 8 | simprd 114 |
. . . 4
|
| 13 | ssralv 3257 |
. . . . 5
| |
| 14 | ssralv 3257 |
. . . . . . . . 9
| |
| 15 | fvres 5600 |
. . . . . . . . . . . . . . 15
| |
| 16 | fvres 5600 |
. . . . . . . . . . . . . . 15
| |
| 17 | 15, 16 | oveqan12d 5963 |
. . . . . . . . . . . . . 14
|
| 18 | 17 | fveq2d 5580 |
. . . . . . . . . . . . 13
|
| 19 | 18 | breq1d 4054 |
. . . . . . . . . . . 12
|
| 20 | 19 | imbi2d 230 |
. . . . . . . . . . 11
|
| 21 | 20 | biimprd 158 |
. . . . . . . . . 10
|
| 22 | 21 | ralimdva 2573 |
. . . . . . . . 9
|
| 23 | 14, 22 | sylan9 409 |
. . . . . . . 8
|
| 24 | 23 | reximdv 2607 |
. . . . . . 7
|
| 25 | 24 | ralimdv 2574 |
. . . . . 6
|
| 26 | 25 | ralimdva 2573 |
. . . . 5
|
| 27 | 13, 26 | syld 45 |
. . . 4
|
| 28 | 10, 12, 27 | sylc 62 |
. . 3
|
| 29 | 10, 3 | sstrd 3203 |
. . . 4
|
| 30 | elcncf 15045 |
. . . 4
| |
| 31 | 29, 5, 30 | syl2anc 411 |
. . 3
|
| 32 | 11, 28, 31 | mpbir2and 947 |
. 2
|
| 33 | 32 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-map 6737 df-cncf 15043 |
| This theorem is referenced by: hovercncf 15118 |
| Copyright terms: Public domain | W3C validator |