| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rescncf | Unicode version | ||
| Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| rescncf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | cncfrss 15243 |
. . . . . . . 8
| |
| 3 | 2 | adantl 277 |
. . . . . . 7
|
| 4 | cncfrss2 15244 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | elcncf 15241 |
. . . . . . 7
| |
| 7 | 3, 5, 6 | syl2anc 411 |
. . . . . 6
|
| 8 | 1, 7 | mpbid 147 |
. . . . 5
|
| 9 | 8 | simpld 112 |
. . . 4
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | 9, 10 | fssresd 5501 |
. . 3
|
| 12 | 8 | simprd 114 |
. . . 4
|
| 13 | ssralv 3288 |
. . . . 5
| |
| 14 | ssralv 3288 |
. . . . . . . . 9
| |
| 15 | fvres 5650 |
. . . . . . . . . . . . . . 15
| |
| 16 | fvres 5650 |
. . . . . . . . . . . . . . 15
| |
| 17 | 15, 16 | oveqan12d 6019 |
. . . . . . . . . . . . . 14
|
| 18 | 17 | fveq2d 5630 |
. . . . . . . . . . . . 13
|
| 19 | 18 | breq1d 4092 |
. . . . . . . . . . . 12
|
| 20 | 19 | imbi2d 230 |
. . . . . . . . . . 11
|
| 21 | 20 | biimprd 158 |
. . . . . . . . . 10
|
| 22 | 21 | ralimdva 2597 |
. . . . . . . . 9
|
| 23 | 14, 22 | sylan9 409 |
. . . . . . . 8
|
| 24 | 23 | reximdv 2631 |
. . . . . . 7
|
| 25 | 24 | ralimdv 2598 |
. . . . . 6
|
| 26 | 25 | ralimdva 2597 |
. . . . 5
|
| 27 | 13, 26 | syld 45 |
. . . 4
|
| 28 | 10, 12, 27 | sylc 62 |
. . 3
|
| 29 | 10, 3 | sstrd 3234 |
. . . 4
|
| 30 | elcncf 15241 |
. . . 4
| |
| 31 | 29, 5, 30 | syl2anc 411 |
. . 3
|
| 32 | 11, 28, 31 | mpbir2and 950 |
. 2
|
| 33 | 32 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-cncf 15239 |
| This theorem is referenced by: hovercncf 15314 |
| Copyright terms: Public domain | W3C validator |