| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rescncf | Unicode version | ||
| Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| rescncf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | cncfrss 15162 |
. . . . . . . 8
| |
| 3 | 2 | adantl 277 |
. . . . . . 7
|
| 4 | cncfrss2 15163 |
. . . . . . . 8
| |
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | elcncf 15160 |
. . . . . . 7
| |
| 7 | 3, 5, 6 | syl2anc 411 |
. . . . . 6
|
| 8 | 1, 7 | mpbid 147 |
. . . . 5
|
| 9 | 8 | simpld 112 |
. . . 4
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | 9, 10 | fssresd 5474 |
. . 3
|
| 12 | 8 | simprd 114 |
. . . 4
|
| 13 | ssralv 3265 |
. . . . 5
| |
| 14 | ssralv 3265 |
. . . . . . . . 9
| |
| 15 | fvres 5623 |
. . . . . . . . . . . . . . 15
| |
| 16 | fvres 5623 |
. . . . . . . . . . . . . . 15
| |
| 17 | 15, 16 | oveqan12d 5986 |
. . . . . . . . . . . . . 14
|
| 18 | 17 | fveq2d 5603 |
. . . . . . . . . . . . 13
|
| 19 | 18 | breq1d 4069 |
. . . . . . . . . . . 12
|
| 20 | 19 | imbi2d 230 |
. . . . . . . . . . 11
|
| 21 | 20 | biimprd 158 |
. . . . . . . . . 10
|
| 22 | 21 | ralimdva 2575 |
. . . . . . . . 9
|
| 23 | 14, 22 | sylan9 409 |
. . . . . . . 8
|
| 24 | 23 | reximdv 2609 |
. . . . . . 7
|
| 25 | 24 | ralimdv 2576 |
. . . . . 6
|
| 26 | 25 | ralimdva 2575 |
. . . . 5
|
| 27 | 13, 26 | syld 45 |
. . . 4
|
| 28 | 10, 12, 27 | sylc 62 |
. . 3
|
| 29 | 10, 3 | sstrd 3211 |
. . . 4
|
| 30 | elcncf 15160 |
. . . 4
| |
| 31 | 29, 5, 30 | syl2anc 411 |
. . 3
|
| 32 | 11, 28, 31 | mpbir2and 947 |
. 2
|
| 33 | 32 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-cncf 15158 |
| This theorem is referenced by: hovercncf 15233 |
| Copyright terms: Public domain | W3C validator |