ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescncf Unicode version

Theorem rescncf 15053
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )

Proof of Theorem rescncf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F  e.  ( A -cn-> B ) )
2 cncfrss 15047 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
32adantl 277 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A  C_  CC )
4 cncfrss2 15048 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
54adantl 277 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  B  C_  CC )
6 elcncf 15045 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
73, 5, 6syl2anc 411 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
81, 7mpbid 147 . . . . 5  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98simpld 112 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F : A --> B )
10 simpl 109 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  A )
119, 10fssresd 5452 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C ) : C --> B )
128simprd 114 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
13 ssralv 3257 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
14 ssralv 3257 . . . . . . . . 9  |-  ( C 
C_  A  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
15 fvres 5600 . . . . . . . . . . . . . . 15  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
16 fvres 5600 . . . . . . . . . . . . . . 15  |-  ( w  e.  C  ->  (
( F  |`  C ) `
 w )  =  ( F `  w
) )
1715, 16oveqan12d 5963 . . . . . . . . . . . . . 14  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) )  =  ( ( F `  x )  -  ( F `  w )
) )
1817fveq2d 5580 . . . . . . . . . . . . 13  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
1918breq1d 4054 . . . . . . . . . . . 12  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
2019imbi2d 230 . . . . . . . . . . 11  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y )  <->  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) ) )
2120biimprd 158 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2221ralimdva 2573 . . . . . . . . 9  |-  ( x  e.  C  ->  ( A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2314, 22sylan9 409 . . . . . . . 8  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2423reximdv 2607 . . . . . . 7  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2524ralimdv 2574 . . . . . 6  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2625ralimdva 2573 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2713, 26syld 45 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2810, 12, 27sylc 62 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) )
2910, 3sstrd 3203 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  CC )
30 elcncf 15045 . . . 4  |-  ( ( C  C_  CC  /\  B  C_  CC )  ->  (
( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3129, 5, 30syl2anc 411 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( ( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3211, 28, 31mpbir2and 947 . 2  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C )  e.  ( C -cn-> B ) )
3332ex 115 1  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4044    |` cres 4677   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   RR+crp 9775   abscabs 11308   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737  df-cncf 15043
This theorem is referenced by:  hovercncf  15118
  Copyright terms: Public domain W3C validator