ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescncf Unicode version

Theorem rescncf 13208
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )

Proof of Theorem rescncf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F  e.  ( A -cn-> B ) )
2 cncfrss 13202 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
32adantl 275 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A  C_  CC )
4 cncfrss2 13203 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
54adantl 275 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  B  C_  CC )
6 elcncf 13200 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
73, 5, 6syl2anc 409 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
81, 7mpbid 146 . . . . 5  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98simpld 111 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F : A --> B )
10 simpl 108 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  A )
119, 10fssresd 5364 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C ) : C --> B )
128simprd 113 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
13 ssralv 3206 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
14 ssralv 3206 . . . . . . . . 9  |-  ( C 
C_  A  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
15 fvres 5510 . . . . . . . . . . . . . . 15  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
16 fvres 5510 . . . . . . . . . . . . . . 15  |-  ( w  e.  C  ->  (
( F  |`  C ) `
 w )  =  ( F `  w
) )
1715, 16oveqan12d 5861 . . . . . . . . . . . . . 14  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) )  =  ( ( F `  x )  -  ( F `  w )
) )
1817fveq2d 5490 . . . . . . . . . . . . 13  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
1918breq1d 3992 . . . . . . . . . . . 12  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
2019imbi2d 229 . . . . . . . . . . 11  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y )  <->  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) ) )
2120biimprd 157 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2221ralimdva 2533 . . . . . . . . 9  |-  ( x  e.  C  ->  ( A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2314, 22sylan9 407 . . . . . . . 8  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2423reximdv 2567 . . . . . . 7  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2524ralimdv 2534 . . . . . 6  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2625ralimdva 2533 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2713, 26syld 45 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2810, 12, 27sylc 62 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) )
2910, 3sstrd 3152 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  CC )
30 elcncf 13200 . . . 4  |-  ( ( C  C_  CC  /\  B  C_  CC )  ->  (
( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3129, 5, 30syl2anc 409 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( ( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3211, 28, 31mpbir2and 934 . 2  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C )  e.  ( C -cn-> B ) )
3332ex 114 1  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   class class class wbr 3982    |` cres 4606   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751    < clt 7933    - cmin 8069   RR+crp 9589   abscabs 10939   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-cncf 13198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator