ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsrpr Unicode version

Theorem mulsrpr 7806
Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
mulsrpr  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ]  ~R  )  =  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )

Proof of Theorem mulsrpr
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4691 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
2 enrex 7797 . . . . 5  |-  ~R  e.  _V
32ecelqsi 6643 . . . 4  |-  ( <. A ,  B >.  e.  ( P.  X.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
41, 3syl 14 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
5 opelxpi 4691 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  -> 
<. C ,  D >.  e.  ( P.  X.  P. ) )
62ecelqsi 6643 . . . 4  |-  ( <. C ,  D >.  e.  ( P.  X.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
75, 6syl 14 . . 3  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
84, 7anim12i 338 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
9 eqid 2193 . . . 4  |-  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R
10 eqid 2193 . . . 4  |-  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R
119, 10pm3.2i 272 . . 3  |-  ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
12 eqid 2193 . . 3  |-  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R
13 opeq12 3806 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6623 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ]  ~R  =  [ <. A ,  B >. ]  ~R  )
1514eqeq2d 2205 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  ) )
1615anbi1d 465 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
17 simpl 109 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5933 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  .P.  C
)  =  ( A  .P.  C ) )
19 simpr 110 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5933 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .P.  D
)  =  ( B  .P.  D ) )
2118, 20oveq12d 5936 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .P.  C )  +P.  ( v  .P.  D ) )  =  ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) )
2217oveq1d 5933 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  .P.  D
)  =  ( A  .P.  D ) )
2319oveq1d 5933 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .P.  C
)  =  ( B  .P.  C ) )
2422, 23oveq12d 5936 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .P.  D )  +P.  ( v  .P.  C ) )  =  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) )
2521, 24opeq12d 3812 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( ( w  .P.  C )  +P.  ( v  .P.  D ) ) ,  ( ( w  .P.  D )  +P.  ( v  .P.  C
) ) >.  =  <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. )
2625eceq1d 6623 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )
2726eqeq2d 2205 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D ) ) ,  ( ( w  .P.  D )  +P.  ( v  .P.  C
) ) >. ]  ~R  <->  [
<. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) ,  ( ( A  .P.  D
)  +P.  ( B  .P.  C ) ) >. ]  ~R  ) )
2816, 27anbi12d 473 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [
<. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) ,  ( ( A  .P.  D
)  +P.  ( B  .P.  C ) ) >. ]  ~R  ) ) )
2928spc2egv 2850 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) ,  ( ( A  .P.  D
)  +P.  ( B  .P.  C ) ) >. ]  ~R  )  ->  E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  ) ) )
30 opeq12 3806 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
3130eceq1d 6623 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ]  ~R  =  [ <. C ,  D >. ]  ~R  )
3231eqeq2d 2205 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
3332anbi2d 464 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) 
<->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) ) )
34 simpl 109 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3534oveq2d 5934 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  .P.  u
)  =  ( w  .P.  C ) )
36 simpr 110 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3736oveq2d 5934 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .P.  t
)  =  ( v  .P.  D ) )
3835, 37oveq12d 5936 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( w  .P.  u )  +P.  (
v  .P.  t )
)  =  ( ( w  .P.  C )  +P.  ( v  .P. 
D ) ) )
3936oveq2d 5934 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  .P.  t
)  =  ( w  .P.  D ) )
4034oveq2d 5934 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .P.  u
)  =  ( v  .P.  C ) )
4139, 40oveq12d 5936 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( w  .P.  t )  +P.  (
v  .P.  u )
)  =  ( ( w  .P.  D )  +P.  ( v  .P. 
C ) ) )
4238, 41opeq12d 3812 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >.  =  <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >.
)
4342eceq1d 6623 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  =  [ <. ( ( w  .P.  C
)  +P.  ( v  .P.  D ) ) ,  ( ( w  .P.  D )  +P.  ( v  .P.  C ) )
>. ]  ~R  )
4443eqeq2d 2205 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  <->  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) ,  ( ( A  .P.  D
)  +P.  ( B  .P.  C ) ) >. ]  ~R  =  [ <. ( ( w  .P.  C
)  +P.  ( v  .P.  D ) ) ,  ( ( w  .P.  D )  +P.  ( v  .P.  C ) )
>. ]  ~R  ) )
4533, 44anbi12d 473 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [
<. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  ) ) )
4645spc2egv 2850 . . . . 5  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  )  ->  E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) )
47462eximdv 1893 . . . 4  |-  ( ( C  e.  P.  /\  D  e.  P. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  C )  +P.  ( v  .P.  D
) ) ,  ( ( w  .P.  D
)  +P.  ( v  .P.  C ) ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) )
4829, 47sylan9 409 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( (
( [ <. A ,  B >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  /\  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  )  ->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) )
4911, 12, 48mp2ani 432 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) )
50 ecexg 6591 . . . 4  |-  (  ~R  e.  _V  ->  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  e.  _V )
512, 50ax-mp 5 . . 3  |-  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  e.  _V
52 simp1 999 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  ->  x  =  [ <. A ,  B >. ]  ~R  )
5352eqeq1d 2202 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( x  =  [ <. w ,  v >. ]  ~R  <->  [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  ) )
54 simp2 1000 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
y  =  [ <. C ,  D >. ]  ~R  )
5554eqeq1d 2202 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( y  =  [ <. u ,  t >. ]  ~R  <->  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) )
5653, 55anbi12d 473 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  <->  ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\ 
[ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  ) ) )
57 simp3 1001 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )
5857eqeq1d 2202 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  <->  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D
) ) ,  ( ( A  .P.  D
)  +P.  ( B  .P.  C ) ) >. ]  ~R  =  [ <. ( ( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
5956, 58anbi12d 473 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  <->  ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v >. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t
>. ]  ~R  )  /\  [
<. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  ( v  .P.  t
) ) ,  ( ( w  .P.  t
)  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) )
60594exbidv 1881 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ]  ~R  /\  y  =  [ <. C ,  D >. ]  ~R  /\  z  =  [ <. ( ( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )  -> 
( E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )  <->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) )
61 mulsrmo 7804 . . . 4  |-  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)
62 df-mr 7789 . . . . 5  |-  .R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  ) ) }
63 df-nr 7787 . . . . . . . . 9  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
6463eleq2i 2260 . . . . . . . 8  |-  ( x  e.  R.  <->  x  e.  ( ( P.  X.  P. ) /.  ~R  )
)
6563eleq2i 2260 . . . . . . . 8  |-  ( y  e.  R.  <->  y  e.  ( ( P.  X.  P. ) /.  ~R  )
)
6664, 65anbi12i 460 . . . . . . 7  |-  ( ( x  e.  R.  /\  y  e.  R. )  <->  ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  )
) )
6766anbi1i 458 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
)  <->  ( ( x  e.  ( ( P. 
X.  P. ) /.  ~R  )  /\  y  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) )
6867oprabbii 5973 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
6962, 68eqtri 2214 . . . 4  |-  .R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  y  e.  (
( P.  X.  P. ) /.  ~R  ) )  /\  E. w E. v E. u E. t
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  t
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
7060, 61, 69ovig 6040 . . 3  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  e.  _V )  ->  ( E. w E. v E. u E. t ( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  ) )
7151, 70mp3an3 1337 . 2  |-  ( ( [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  [
<. C ,  D >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ]  ~R  =  [ <. w ,  v
>. ]  ~R  /\  [ <. C ,  D >. ]  ~R  =  [ <. u ,  t >. ]  ~R  )  /\  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  =  [ <. ( ( w  .P.  u )  +P.  (
v  .P.  t )
) ,  ( ( w  .P.  t )  +P.  ( v  .P.  u ) ) >. ]  ~R  )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ]  ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C
) ) >. ]  ~R  ) )
728, 49, 71sylc 62 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ]  ~R  )  =  [ <. (
( A  .P.  C
)  +P.  ( B  .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B  .P.  C ) )
>. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   <.cop 3621    X. cxp 4657  (class class class)co 5918   {coprab 5919   [cec 6585   /.cqs 6586   P.cnp 7351    +P. cpp 7353    .P. cmp 7354    ~R cer 7356   R.cnr 7357    .R cmr 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-imp 7529  df-enr 7786  df-nr 7787  df-mr 7789
This theorem is referenced by:  mulclsr  7814  mulcomsrg  7817  mulasssrg  7818  distrsrg  7819  m1m1sr  7821  1idsr  7828  00sr  7829  recexgt0sr  7833  mulgt0sr  7838  mulextsr1  7841  recidpirq  7918
  Copyright terms: Public domain W3C validator