Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulsrpr | Unicode version |
Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
mulsrpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4636 | . . . 4 | |
2 | enrex 7678 | . . . . 5 | |
3 | 2 | ecelqsi 6555 | . . . 4 |
4 | 1, 3 | syl 14 | . . 3 |
5 | opelxpi 4636 | . . . 4 | |
6 | 2 | ecelqsi 6555 | . . . 4 |
7 | 5, 6 | syl 14 | . . 3 |
8 | 4, 7 | anim12i 336 | . 2 |
9 | eqid 2165 | . . . 4 | |
10 | eqid 2165 | . . . 4 | |
11 | 9, 10 | pm3.2i 270 | . . 3 |
12 | eqid 2165 | . . 3 | |
13 | opeq12 3760 | . . . . . . . . 9 | |
14 | 13 | eceq1d 6537 | . . . . . . . 8 |
15 | 14 | eqeq2d 2177 | . . . . . . 7 |
16 | 15 | anbi1d 461 | . . . . . 6 |
17 | simpl 108 | . . . . . . . . . . 11 | |
18 | 17 | oveq1d 5857 | . . . . . . . . . 10 |
19 | simpr 109 | . . . . . . . . . . 11 | |
20 | 19 | oveq1d 5857 | . . . . . . . . . 10 |
21 | 18, 20 | oveq12d 5860 | . . . . . . . . 9 |
22 | 17 | oveq1d 5857 | . . . . . . . . . 10 |
23 | 19 | oveq1d 5857 | . . . . . . . . . 10 |
24 | 22, 23 | oveq12d 5860 | . . . . . . . . 9 |
25 | 21, 24 | opeq12d 3766 | . . . . . . . 8 |
26 | 25 | eceq1d 6537 | . . . . . . 7 |
27 | 26 | eqeq2d 2177 | . . . . . 6 |
28 | 16, 27 | anbi12d 465 | . . . . 5 |
29 | 28 | spc2egv 2816 | . . . 4 |
30 | opeq12 3760 | . . . . . . . . . 10 | |
31 | 30 | eceq1d 6537 | . . . . . . . . 9 |
32 | 31 | eqeq2d 2177 | . . . . . . . 8 |
33 | 32 | anbi2d 460 | . . . . . . 7 |
34 | simpl 108 | . . . . . . . . . . . 12 | |
35 | 34 | oveq2d 5858 | . . . . . . . . . . 11 |
36 | simpr 109 | . . . . . . . . . . . 12 | |
37 | 36 | oveq2d 5858 | . . . . . . . . . . 11 |
38 | 35, 37 | oveq12d 5860 | . . . . . . . . . 10 |
39 | 36 | oveq2d 5858 | . . . . . . . . . . 11 |
40 | 34 | oveq2d 5858 | . . . . . . . . . . 11 |
41 | 39, 40 | oveq12d 5860 | . . . . . . . . . 10 |
42 | 38, 41 | opeq12d 3766 | . . . . . . . . 9 |
43 | 42 | eceq1d 6537 | . . . . . . . 8 |
44 | 43 | eqeq2d 2177 | . . . . . . 7 |
45 | 33, 44 | anbi12d 465 | . . . . . 6 |
46 | 45 | spc2egv 2816 | . . . . 5 |
47 | 46 | 2eximdv 1870 | . . . 4 |
48 | 29, 47 | sylan9 407 | . . 3 |
49 | 11, 12, 48 | mp2ani 429 | . 2 |
50 | ecexg 6505 | . . . 4 | |
51 | 2, 50 | ax-mp 5 | . . 3 |
52 | simp1 987 | . . . . . . . 8 | |
53 | 52 | eqeq1d 2174 | . . . . . . 7 |
54 | simp2 988 | . . . . . . . 8 | |
55 | 54 | eqeq1d 2174 | . . . . . . 7 |
56 | 53, 55 | anbi12d 465 | . . . . . 6 |
57 | simp3 989 | . . . . . . 7 | |
58 | 57 | eqeq1d 2174 | . . . . . 6 |
59 | 56, 58 | anbi12d 465 | . . . . 5 |
60 | 59 | 4exbidv 1858 | . . . 4 |
61 | mulsrmo 7685 | . . . 4 | |
62 | df-mr 7670 | . . . . 5 | |
63 | df-nr 7668 | . . . . . . . . 9 | |
64 | 63 | eleq2i 2233 | . . . . . . . 8 |
65 | 63 | eleq2i 2233 | . . . . . . . 8 |
66 | 64, 65 | anbi12i 456 | . . . . . . 7 |
67 | 66 | anbi1i 454 | . . . . . 6 |
68 | 67 | oprabbii 5897 | . . . . 5 |
69 | 62, 68 | eqtri 2186 | . . . 4 |
70 | 60, 61, 69 | ovig 5963 | . . 3 |
71 | 51, 70 | mp3an3 1316 | . 2 |
72 | 8, 49, 71 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 cxp 4602 (class class class)co 5842 coprab 5843 cec 6499 cqs 6500 cnp 7232 cpp 7234 cmp 7235 cer 7237 cnr 7238 cmr 7243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-imp 7410 df-enr 7667 df-nr 7668 df-mr 7670 |
This theorem is referenced by: mulclsr 7695 mulcomsrg 7698 mulasssrg 7699 distrsrg 7700 m1m1sr 7702 1idsr 7709 00sr 7710 recexgt0sr 7714 mulgt0sr 7719 mulextsr1 7722 recidpirq 7799 |
Copyright terms: Public domain | W3C validator |