| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulsrpr | Unicode version | ||
| Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| mulsrpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxpi 4695 | 
. . . 4
 | |
| 2 | enrex 7804 | 
. . . . 5
 | |
| 3 | 2 | ecelqsi 6648 | 
. . . 4
 | 
| 4 | 1, 3 | syl 14 | 
. . 3
 | 
| 5 | opelxpi 4695 | 
. . . 4
 | |
| 6 | 2 | ecelqsi 6648 | 
. . . 4
 | 
| 7 | 5, 6 | syl 14 | 
. . 3
 | 
| 8 | 4, 7 | anim12i 338 | 
. 2
 | 
| 9 | eqid 2196 | 
. . . 4
 | |
| 10 | eqid 2196 | 
. . . 4
 | |
| 11 | 9, 10 | pm3.2i 272 | 
. . 3
 | 
| 12 | eqid 2196 | 
. . 3
 | |
| 13 | opeq12 3810 | 
. . . . . . . . 9
 | |
| 14 | 13 | eceq1d 6628 | 
. . . . . . . 8
 | 
| 15 | 14 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 16 | 15 | anbi1d 465 | 
. . . . . 6
 | 
| 17 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 18 | 17 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 19 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 20 | 19 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 21 | 18, 20 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 22 | 17 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 23 | 19 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 24 | 22, 23 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 25 | 21, 24 | opeq12d 3816 | 
. . . . . . . 8
 | 
| 26 | 25 | eceq1d 6628 | 
. . . . . . 7
 | 
| 27 | 26 | eqeq2d 2208 | 
. . . . . 6
 | 
| 28 | 16, 27 | anbi12d 473 | 
. . . . 5
 | 
| 29 | 28 | spc2egv 2854 | 
. . . 4
 | 
| 30 | opeq12 3810 | 
. . . . . . . . . 10
 | |
| 31 | 30 | eceq1d 6628 | 
. . . . . . . . 9
 | 
| 32 | 31 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 33 | 32 | anbi2d 464 | 
. . . . . . 7
 | 
| 34 | simpl 109 | 
. . . . . . . . . . . 12
 | |
| 35 | 34 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 36 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 37 | 36 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 38 | 35, 37 | oveq12d 5940 | 
. . . . . . . . . 10
 | 
| 39 | 36 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 40 | 34 | oveq2d 5938 | 
. . . . . . . . . . 11
 | 
| 41 | 39, 40 | oveq12d 5940 | 
. . . . . . . . . 10
 | 
| 42 | 38, 41 | opeq12d 3816 | 
. . . . . . . . 9
 | 
| 43 | 42 | eceq1d 6628 | 
. . . . . . . 8
 | 
| 44 | 43 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 45 | 33, 44 | anbi12d 473 | 
. . . . . 6
 | 
| 46 | 45 | spc2egv 2854 | 
. . . . 5
 | 
| 47 | 46 | 2eximdv 1896 | 
. . . 4
 | 
| 48 | 29, 47 | sylan9 409 | 
. . 3
 | 
| 49 | 11, 12, 48 | mp2ani 432 | 
. 2
 | 
| 50 | ecexg 6596 | 
. . . 4
 | |
| 51 | 2, 50 | ax-mp 5 | 
. . 3
 | 
| 52 | simp1 999 | 
. . . . . . . 8
 | |
| 53 | 52 | eqeq1d 2205 | 
. . . . . . 7
 | 
| 54 | simp2 1000 | 
. . . . . . . 8
 | |
| 55 | 54 | eqeq1d 2205 | 
. . . . . . 7
 | 
| 56 | 53, 55 | anbi12d 473 | 
. . . . . 6
 | 
| 57 | simp3 1001 | 
. . . . . . 7
 | |
| 58 | 57 | eqeq1d 2205 | 
. . . . . 6
 | 
| 59 | 56, 58 | anbi12d 473 | 
. . . . 5
 | 
| 60 | 59 | 4exbidv 1884 | 
. . . 4
 | 
| 61 | mulsrmo 7811 | 
. . . 4
 | |
| 62 | df-mr 7796 | 
. . . . 5
 | |
| 63 | df-nr 7794 | 
. . . . . . . . 9
 | |
| 64 | 63 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 65 | 63 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 66 | 64, 65 | anbi12i 460 | 
. . . . . . 7
 | 
| 67 | 66 | anbi1i 458 | 
. . . . . 6
 | 
| 68 | 67 | oprabbii 5977 | 
. . . . 5
 | 
| 69 | 62, 68 | eqtri 2217 | 
. . . 4
 | 
| 70 | 60, 61, 69 | ovig 6044 | 
. . 3
 | 
| 71 | 51, 70 | mp3an3 1337 | 
. 2
 | 
| 72 | 8, 49, 71 | sylc 62 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iplp 7535 df-imp 7536 df-enr 7793 df-nr 7794 df-mr 7796 | 
| This theorem is referenced by: mulclsr 7821 mulcomsrg 7824 mulasssrg 7825 distrsrg 7826 m1m1sr 7828 1idsr 7835 00sr 7836 recexgt0sr 7840 mulgt0sr 7845 mulextsr1 7848 recidpirq 7925 | 
| Copyright terms: Public domain | W3C validator |