| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulsrpr | Unicode version | ||
| Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| mulsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4751 |
. . . 4
| |
| 2 | enrex 7924 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6736 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4751 |
. . . 4
| |
| 6 | 2 | ecelqsi 6736 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 338 |
. 2
|
| 9 | eqid 2229 |
. . . 4
| |
| 10 | eqid 2229 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 272 |
. . 3
|
| 12 | eqid 2229 |
. . 3
| |
| 13 | opeq12 3859 |
. . . . . . . . 9
| |
| 14 | 13 | eceq1d 6716 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2241 |
. . . . . . 7
|
| 16 | 15 | anbi1d 465 |
. . . . . 6
|
| 17 | simpl 109 |
. . . . . . . . . . 11
| |
| 18 | 17 | oveq1d 6016 |
. . . . . . . . . 10
|
| 19 | simpr 110 |
. . . . . . . . . . 11
| |
| 20 | 19 | oveq1d 6016 |
. . . . . . . . . 10
|
| 21 | 18, 20 | oveq12d 6019 |
. . . . . . . . 9
|
| 22 | 17 | oveq1d 6016 |
. . . . . . . . . 10
|
| 23 | 19 | oveq1d 6016 |
. . . . . . . . . 10
|
| 24 | 22, 23 | oveq12d 6019 |
. . . . . . . . 9
|
| 25 | 21, 24 | opeq12d 3865 |
. . . . . . . 8
|
| 26 | 25 | eceq1d 6716 |
. . . . . . 7
|
| 27 | 26 | eqeq2d 2241 |
. . . . . 6
|
| 28 | 16, 27 | anbi12d 473 |
. . . . 5
|
| 29 | 28 | spc2egv 2893 |
. . . 4
|
| 30 | opeq12 3859 |
. . . . . . . . . 10
| |
| 31 | 30 | eceq1d 6716 |
. . . . . . . . 9
|
| 32 | 31 | eqeq2d 2241 |
. . . . . . . 8
|
| 33 | 32 | anbi2d 464 |
. . . . . . 7
|
| 34 | simpl 109 |
. . . . . . . . . . . 12
| |
| 35 | 34 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 36 | simpr 110 |
. . . . . . . . . . . 12
| |
| 37 | 36 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 38 | 35, 37 | oveq12d 6019 |
. . . . . . . . . 10
|
| 39 | 36 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 40 | 34 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 41 | 39, 40 | oveq12d 6019 |
. . . . . . . . . 10
|
| 42 | 38, 41 | opeq12d 3865 |
. . . . . . . . 9
|
| 43 | 42 | eceq1d 6716 |
. . . . . . . 8
|
| 44 | 43 | eqeq2d 2241 |
. . . . . . 7
|
| 45 | 33, 44 | anbi12d 473 |
. . . . . 6
|
| 46 | 45 | spc2egv 2893 |
. . . . 5
|
| 47 | 46 | 2eximdv 1928 |
. . . 4
|
| 48 | 29, 47 | sylan9 409 |
. . 3
|
| 49 | 11, 12, 48 | mp2ani 432 |
. 2
|
| 50 | ecexg 6684 |
. . . 4
| |
| 51 | 2, 50 | ax-mp 5 |
. . 3
|
| 52 | simp1 1021 |
. . . . . . . 8
| |
| 53 | 52 | eqeq1d 2238 |
. . . . . . 7
|
| 54 | simp2 1022 |
. . . . . . . 8
| |
| 55 | 54 | eqeq1d 2238 |
. . . . . . 7
|
| 56 | 53, 55 | anbi12d 473 |
. . . . . 6
|
| 57 | simp3 1023 |
. . . . . . 7
| |
| 58 | 57 | eqeq1d 2238 |
. . . . . 6
|
| 59 | 56, 58 | anbi12d 473 |
. . . . 5
|
| 60 | 59 | 4exbidv 1916 |
. . . 4
|
| 61 | mulsrmo 7931 |
. . . 4
| |
| 62 | df-mr 7916 |
. . . . 5
| |
| 63 | df-nr 7914 |
. . . . . . . . 9
| |
| 64 | 63 | eleq2i 2296 |
. . . . . . . 8
|
| 65 | 63 | eleq2i 2296 |
. . . . . . . 8
|
| 66 | 64, 65 | anbi12i 460 |
. . . . . . 7
|
| 67 | 66 | anbi1i 458 |
. . . . . 6
|
| 68 | 67 | oprabbii 6059 |
. . . . 5
|
| 69 | 62, 68 | eqtri 2250 |
. . . 4
|
| 70 | 60, 61, 69 | ovig 6126 |
. . 3
|
| 71 | 51, 70 | mp3an3 1360 |
. 2
|
| 72 | 8, 49, 71 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-imp 7656 df-enr 7913 df-nr 7914 df-mr 7916 |
| This theorem is referenced by: mulclsr 7941 mulcomsrg 7944 mulasssrg 7945 distrsrg 7946 m1m1sr 7948 1idsr 7955 00sr 7956 recexgt0sr 7960 mulgt0sr 7965 mulextsr1 7968 recidpirq 8045 |
| Copyright terms: Public domain | W3C validator |