Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulsrpr | Unicode version |
Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
mulsrpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4643 | . . . 4 | |
2 | enrex 7699 | . . . . 5 | |
3 | 2 | ecelqsi 6567 | . . . 4 |
4 | 1, 3 | syl 14 | . . 3 |
5 | opelxpi 4643 | . . . 4 | |
6 | 2 | ecelqsi 6567 | . . . 4 |
7 | 5, 6 | syl 14 | . . 3 |
8 | 4, 7 | anim12i 336 | . 2 |
9 | eqid 2170 | . . . 4 | |
10 | eqid 2170 | . . . 4 | |
11 | 9, 10 | pm3.2i 270 | . . 3 |
12 | eqid 2170 | . . 3 | |
13 | opeq12 3767 | . . . . . . . . 9 | |
14 | 13 | eceq1d 6549 | . . . . . . . 8 |
15 | 14 | eqeq2d 2182 | . . . . . . 7 |
16 | 15 | anbi1d 462 | . . . . . 6 |
17 | simpl 108 | . . . . . . . . . . 11 | |
18 | 17 | oveq1d 5868 | . . . . . . . . . 10 |
19 | simpr 109 | . . . . . . . . . . 11 | |
20 | 19 | oveq1d 5868 | . . . . . . . . . 10 |
21 | 18, 20 | oveq12d 5871 | . . . . . . . . 9 |
22 | 17 | oveq1d 5868 | . . . . . . . . . 10 |
23 | 19 | oveq1d 5868 | . . . . . . . . . 10 |
24 | 22, 23 | oveq12d 5871 | . . . . . . . . 9 |
25 | 21, 24 | opeq12d 3773 | . . . . . . . 8 |
26 | 25 | eceq1d 6549 | . . . . . . 7 |
27 | 26 | eqeq2d 2182 | . . . . . 6 |
28 | 16, 27 | anbi12d 470 | . . . . 5 |
29 | 28 | spc2egv 2820 | . . . 4 |
30 | opeq12 3767 | . . . . . . . . . 10 | |
31 | 30 | eceq1d 6549 | . . . . . . . . 9 |
32 | 31 | eqeq2d 2182 | . . . . . . . 8 |
33 | 32 | anbi2d 461 | . . . . . . 7 |
34 | simpl 108 | . . . . . . . . . . . 12 | |
35 | 34 | oveq2d 5869 | . . . . . . . . . . 11 |
36 | simpr 109 | . . . . . . . . . . . 12 | |
37 | 36 | oveq2d 5869 | . . . . . . . . . . 11 |
38 | 35, 37 | oveq12d 5871 | . . . . . . . . . 10 |
39 | 36 | oveq2d 5869 | . . . . . . . . . . 11 |
40 | 34 | oveq2d 5869 | . . . . . . . . . . 11 |
41 | 39, 40 | oveq12d 5871 | . . . . . . . . . 10 |
42 | 38, 41 | opeq12d 3773 | . . . . . . . . 9 |
43 | 42 | eceq1d 6549 | . . . . . . . 8 |
44 | 43 | eqeq2d 2182 | . . . . . . 7 |
45 | 33, 44 | anbi12d 470 | . . . . . 6 |
46 | 45 | spc2egv 2820 | . . . . 5 |
47 | 46 | 2eximdv 1875 | . . . 4 |
48 | 29, 47 | sylan9 407 | . . 3 |
49 | 11, 12, 48 | mp2ani 430 | . 2 |
50 | ecexg 6517 | . . . 4 | |
51 | 2, 50 | ax-mp 5 | . . 3 |
52 | simp1 992 | . . . . . . . 8 | |
53 | 52 | eqeq1d 2179 | . . . . . . 7 |
54 | simp2 993 | . . . . . . . 8 | |
55 | 54 | eqeq1d 2179 | . . . . . . 7 |
56 | 53, 55 | anbi12d 470 | . . . . . 6 |
57 | simp3 994 | . . . . . . 7 | |
58 | 57 | eqeq1d 2179 | . . . . . 6 |
59 | 56, 58 | anbi12d 470 | . . . . 5 |
60 | 59 | 4exbidv 1863 | . . . 4 |
61 | mulsrmo 7706 | . . . 4 | |
62 | df-mr 7691 | . . . . 5 | |
63 | df-nr 7689 | . . . . . . . . 9 | |
64 | 63 | eleq2i 2237 | . . . . . . . 8 |
65 | 63 | eleq2i 2237 | . . . . . . . 8 |
66 | 64, 65 | anbi12i 457 | . . . . . . 7 |
67 | 66 | anbi1i 455 | . . . . . 6 |
68 | 67 | oprabbii 5908 | . . . . 5 |
69 | 62, 68 | eqtri 2191 | . . . 4 |
70 | 60, 61, 69 | ovig 5974 | . . 3 |
71 | 51, 70 | mp3an3 1321 | . 2 |
72 | 8, 49, 71 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 cxp 4609 (class class class)co 5853 coprab 5854 cec 6511 cqs 6512 cnp 7253 cpp 7255 cmp 7256 cer 7258 cnr 7259 cmr 7264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-iplp 7430 df-imp 7431 df-enr 7688 df-nr 7689 df-mr 7691 |
This theorem is referenced by: mulclsr 7716 mulcomsrg 7719 mulasssrg 7720 distrsrg 7721 m1m1sr 7723 1idsr 7730 00sr 7731 recexgt0sr 7735 mulgt0sr 7740 mulextsr1 7743 recidpirq 7820 |
Copyright terms: Public domain | W3C validator |