ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2f Unicode version

Theorem tfis2f 4650
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1  |-  F/ x ps
tfis2f.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis2f.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis2f  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5  |-  F/ x ps
2 tfis2f.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2sbie 1815 . . . 4  |-  ( [ y  /  x ] ph 
<->  ps )
43ralbii 2514 . . 3  |-  ( A. y  e.  x  [
y  /  x ] ph 
<-> 
A. y  e.  x  ps )
5 tfis2f.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
64, 5biimtrid 152 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  [ y  /  x ] ph  ->  ph ) )
76tfis 4649 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1484   [wsb 1786    e. wcel 2178   A.wral 2486   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by:  tfis2  4651  tfri3  6476
  Copyright terms: Public domain W3C validator