ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2f Unicode version

Theorem tfis2f 4584
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1  |-  F/ x ps
tfis2f.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis2f.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis2f  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5  |-  F/ x ps
2 tfis2f.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2sbie 1791 . . . 4  |-  ( [ y  /  x ] ph 
<->  ps )
43ralbii 2483 . . 3  |-  ( A. y  e.  x  [
y  /  x ] ph 
<-> 
A. y  e.  x  ps )
5 tfis2f.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
64, 5biimtrid 152 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  [ y  /  x ] ph  ->  ph ) )
76tfis 4583 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1460   [wsb 1762    e. wcel 2148   A.wral 2455   Oncon0 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-in 3136  df-ss 3143  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369
This theorem is referenced by:  tfis2  4585  tfri3  6368
  Copyright terms: Public domain W3C validator