ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2f Unicode version

Theorem tfis2f 4620
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2f.1  |-  F/ x ps
tfis2f.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis2f.3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis2f  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem tfis2f
StepHypRef Expression
1 tfis2f.1 . . . . 5  |-  F/ x ps
2 tfis2f.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2sbie 1805 . . . 4  |-  ( [ y  /  x ] ph 
<->  ps )
43ralbii 2503 . . 3  |-  ( A. y  e.  x  [
y  /  x ] ph 
<-> 
A. y  e.  x  ps )
5 tfis2f.3 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
64, 5biimtrid 152 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  [ y  /  x ] ph  ->  ph ) )
76tfis 4619 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1474   [wsb 1776    e. wcel 2167   A.wral 2475   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  tfis2  4621  tfri3  6425
  Copyright terms: Public domain W3C validator