| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfis2f | Unicode version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| Ref | Expression |
|---|---|
| tfis2f.1 |
|
| tfis2f.2 |
|
| tfis2f.3 |
|
| Ref | Expression |
|---|---|
| tfis2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2f.1 |
. . . . 5
| |
| 2 | tfis2f.2 |
. . . . 5
| |
| 3 | 1, 2 | sbie 1837 |
. . . 4
|
| 4 | 3 | ralbii 2536 |
. . 3
|
| 5 | tfis2f.3 |
. . 3
| |
| 6 | 4, 5 | biimtrid 152 |
. 2
|
| 7 | 6 | tfis 4674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 |
| This theorem is referenced by: tfis2 4676 tfri3 6511 |
| Copyright terms: Public domain | W3C validator |