| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfis2f | GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| Ref | Expression |
|---|---|
| tfis2f.1 | ⊢ Ⅎ𝑥𝜓 |
| tfis2f.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| tfis2f.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| tfis2f | ⊢ (𝑥 ∈ On → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 2 | tfis2f.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | sbie 1817 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 4 | 3 | ralbii 2516 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| 5 | tfis2f.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 6 | 4, 5 | biimtrid 152 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) |
| 7 | 6 | tfis 4652 | 1 ⊢ (𝑥 ∈ On → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1486 [wsb 1788 ∈ wcel 2180 ∀wral 2488 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-in 3183 df-ss 3190 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: tfis2 4654 tfri3 6483 |
| Copyright terms: Public domain | W3C validator |