| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfis2f | GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| tfis2f.1 | ⊢ Ⅎ𝑥𝜓 | 
| tfis2f.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| tfis2f.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | 
| Ref | Expression | 
|---|---|
| tfis2f | ⊢ (𝑥 ∈ On → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfis2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 2 | tfis2f.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | sbie 1805 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 4 | 3 | ralbii 2503 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) | 
| 5 | tfis2f.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 6 | 4, 5 | biimtrid 152 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) | 
| 7 | 6 | tfis 4619 | 1 ⊢ (𝑥 ∈ On → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 [wsb 1776 ∈ wcel 2167 ∀wral 2475 Oncon0 4398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: tfis2 4621 tfri3 6425 | 
| Copyright terms: Public domain | W3C validator |