ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2 Unicode version

Theorem tfis2 4617
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis2.2  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis2  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ps, x    ph, y    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1539 . 2  |-  F/ x ps
2 tfis2.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 tfis2.2 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
41, 2, 3tfis2f 4616 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   A.wral 2472   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  tfis3  4618  tfrlem1  6361  ordiso2  7094  exmidontriimlem4  7284  exmidontriim  7285
  Copyright terms: Public domain W3C validator