ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis2 Unicode version

Theorem tfis2 4569
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.)
Hypotheses
Ref Expression
tfis2.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
tfis2.2  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
Assertion
Ref Expression
tfis2  |-  ( x  e.  On  ->  ph )
Distinct variable groups:    ps, x    ph, y    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem tfis2
StepHypRef Expression
1 nfv 1521 . 2  |-  F/ x ps
2 tfis2.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 tfis2.2 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  ps  ->  ph ) )
41, 2, 3tfis2f 4568 1  |-  ( x  e.  On  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   A.wral 2448   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  tfis3  4570  tfrlem1  6287  ordiso2  7012  exmidontriimlem4  7201  exmidontriim  7202
  Copyright terms: Public domain W3C validator