ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid1g Unicode version

Theorem tpid1g 3750
Description: Closed theorem form of tpid1 3749. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2206 . . 3  |-  A  =  A
213mix1i 1172 . 2  |-  ( A  =  A  \/  A  =  C  \/  A  =  D )
3 eltpg 3683 . 2  |-  ( A  e.  B  ->  ( A  e.  { A ,  C ,  D }  <->  ( A  =  A  \/  A  =  C  \/  A  =  D )
) )
42, 3mpbiri 168 1  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 980    = wceq 1373    e. wcel 2177   {ctp 3640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-tp 3646
This theorem is referenced by:  rngbaseg  13043  srngbased  13054  lmodbased  13072  ipsbased  13084  ipsscad  13087  topgrpbasd  13104  psrbasg  14511
  Copyright terms: Public domain W3C validator