ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid1g Unicode version

Theorem tpid1g 3667
Description: Closed theorem form of tpid1 3666. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2154 . . 3  |-  A  =  A
213mix1i 1154 . 2  |-  ( A  =  A  \/  A  =  C  \/  A  =  D )
3 eltpg 3600 . 2  |-  ( A  e.  B  ->  ( A  e.  { A ,  C ,  D }  <->  ( A  =  A  \/  A  =  C  \/  A  =  D )
) )
42, 3mpbiri 167 1  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 962    = wceq 1332    e. wcel 2125   {ctp 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-tp 3564
This theorem is referenced by:  rngbaseg  12245  srngbased  12252  lmodbased  12263  ipsbased  12271  ipsscad  12274  topgrpbasd  12281
  Copyright terms: Public domain W3C validator