ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid1g Unicode version

Theorem tpid1g 3695
Description: Closed theorem form of tpid1 3694. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2170 . . 3  |-  A  =  A
213mix1i 1164 . 2  |-  ( A  =  A  \/  A  =  C  \/  A  =  D )
3 eltpg 3628 . 2  |-  ( A  e.  B  ->  ( A  e.  { A ,  C ,  D }  <->  ( A  =  A  \/  A  =  C  \/  A  =  D )
) )
42, 3mpbiri 167 1  |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 972    = wceq 1348    e. wcel 2141   {ctp 3585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3or 974  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-tp 3591
This theorem is referenced by:  rngbaseg  12534  srngbased  12541  lmodbased  12552  ipsbased  12560  ipsscad  12563  topgrpbasd  12570
  Copyright terms: Public domain W3C validator