ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpbasd Unicode version

Theorem topgrpbasd 11954
Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
topgrpfnd.b  |-  ( ph  ->  B  e.  V )
topgrpfnd.p  |-  ( ph  ->  .+  e.  W )
topgrpfnd.j  |-  ( ph  ->  J  e.  X )
Assertion
Ref Expression
topgrpbasd  |-  ( ph  ->  B  =  ( Base `  W ) )

Proof of Theorem topgrpbasd
StepHypRef Expression
1 topgrpfn.w . . 3  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
2 topgrpfnd.b . . 3  |-  ( ph  ->  B  e.  V )
3 topgrpfnd.p . . 3  |-  ( ph  ->  .+  e.  W )
4 topgrpfnd.j . . 3  |-  ( ph  ->  J  e.  X )
51, 2, 3, 4topgrpstrd 11953 . 2  |-  ( ph  ->  W Struct  <. 1 ,  9
>. )
6 basendxnn 11857 . . . . 5  |-  ( Base `  ndx )  e.  NN
7 opexg 4110 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
86, 2, 7sylancr 408 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
9 tpid1g 3601 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
108, 9syl 14 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
1110, 1syl6eleqr 2208 . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e.  W )
125, 2, 11opelstrbas 11899 1  |-  ( ph  ->  B  =  ( Base `  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   _Vcvv 2657   {ctp 3495   <.cop 3496   ` cfv 5081   1c1 7548   NNcn 8630   9c9 8688   ndxcnx 11799   Basecbs 11802   +g cplusg 11864  TopSetcts 11870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-tp 3501  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-7 8694  df-8 8695  df-9 8696  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684  df-struct 11804  df-ndx 11805  df-slot 11806  df-base 11808  df-plusg 11877  df-tset 11883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator