ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srngbased Unicode version

Theorem srngbased 12897
Description: The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
srngstr.r  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
srngstrd.b  |-  ( ph  ->  B  e.  V )
srngstrd.p  |-  ( ph  ->  .+  e.  W )
srngstrd.m  |-  ( ph  ->  .x.  e.  X )
srngstrd.s  |-  ( ph  ->  .*  e.  Y )
Assertion
Ref Expression
srngbased  |-  ( ph  ->  B  =  ( Base `  R ) )

Proof of Theorem srngbased
StepHypRef Expression
1 srngstr.r . . 3  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
2 srngstrd.b . . 3  |-  ( ph  ->  B  e.  V )
3 srngstrd.p . . 3  |-  ( ph  ->  .+  e.  W )
4 srngstrd.m . . 3  |-  ( ph  ->  .x.  e.  X )
5 srngstrd.s . . 3  |-  ( ph  ->  .*  e.  Y )
61, 2, 3, 4, 5srngstrd 12896 . 2  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )
7 basendxnn 12807 . . . . 5  |-  ( Base `  ndx )  e.  NN
8 opexg 4271 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
97, 2, 8sylancr 414 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
10 tpid1g 3744 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. } )
11 elun1 3339 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  ->  <. ( Base `  ndx ) ,  B >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) )
129, 10, 113syl 17 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e.  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) )
1312, 1eleqtrrdi 2298 . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e.  R )
146, 2, 13opelstrbas 12866 1  |-  ( ph  ->  B  =  ( Base `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    u. cun 3163   {csn 3632   {ctp 3634   <.cop 3635   ` cfv 5268   1c1 7908   NNcn 9018   4c4 9071   ndxcnx 12748   Basecbs 12751   +g cplusg 12828   .rcmulr 12829   *rcstv 12830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-struct 12753  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mulr 12842  df-starv 12843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator