ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsscad Unicode version

Theorem ipsscad 13213
Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
ipsstrd.b  |-  ( ph  ->  B  e.  V )
ipsstrd.p  |-  ( ph  ->  .+  e.  W )
ipsstrd.r  |-  ( ph  ->  .X.  e.  X )
ipsstrd.s  |-  ( ph  ->  S  e.  Y )
ipsstrd.x  |-  ( ph  ->  .x.  e.  Q )
ipsstrd.i  |-  ( ph  ->  I  e.  Z )
Assertion
Ref Expression
ipsscad  |-  ( ph  ->  S  =  (Scalar `  A ) )

Proof of Theorem ipsscad
StepHypRef Expression
1 scaslid 13186 . 2  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2 ipspart.a . . 3  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
3 ipsstrd.b . . 3  |-  ( ph  ->  B  e.  V )
4 ipsstrd.p . . 3  |-  ( ph  ->  .+  e.  W )
5 ipsstrd.r . . 3  |-  ( ph  ->  .X.  e.  X )
6 ipsstrd.s . . 3  |-  ( ph  ->  S  e.  Y )
7 ipsstrd.x . . 3  |-  ( ph  ->  .x.  e.  Q )
8 ipsstrd.i . . 3  |-  ( ph  ->  I  e.  Z )
92, 3, 4, 5, 6, 7, 8ipsstrd 13209 . 2  |-  ( ph  ->  A Struct  <. 1 ,  8
>. )
101simpri 113 . . . . 5  |-  (Scalar `  ndx )  e.  NN
11 opexg 4314 . . . . 5  |-  ( ( (Scalar `  ndx )  e.  NN  /\  S  e.  Y )  ->  <. (Scalar ` 
ndx ) ,  S >.  e.  _V )
1210, 6, 11sylancr 414 . . . 4  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  S >.  e.  _V )
13 tpid1g 3779 . . . 4  |-  ( <.
(Scalar `  ndx ) ,  S >.  e.  _V  -> 
<. (Scalar `  ndx ) ,  S >.  e.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
14 elun2 3372 . . . 4  |-  ( <.
(Scalar `  ndx ) ,  S >.  e.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. }  ->  <. (Scalar ` 
ndx ) ,  S >.  e.  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1512, 13, 143syl 17 . . 3  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  S >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1615, 2eleqtrrdi 2323 . 2  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  S >.  e.  A
)
171, 9, 6, 16opelstrsl 13147 1  |-  ( ph  ->  S  =  (Scalar `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195   {ctp 3668   <.cop 3669   ` cfv 5318   1c1 8000   NNcn 9110   8c8 9167   ndxcnx 13029  Slot cslot 13031   Basecbs 13032   +g cplusg 13110   .rcmulr 13111  Scalarcsca 13113   .scvsca 13114   .icip 13115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-ip 13128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator