Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ipsscad | Unicode version |
Description: The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | Scalar |
ipsstrd.b | |
ipsstrd.p | |
ipsstrd.r | |
ipsstrd.s | |
ipsstrd.x | |
ipsstrd.i |
Ref | Expression |
---|---|
ipsscad | Scalar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaslid 12290 | . 2 Scalar Slot Scalar Scalar | |
2 | ipspart.a | . . 3 Scalar | |
3 | ipsstrd.b | . . 3 | |
4 | ipsstrd.p | . . 3 | |
5 | ipsstrd.r | . . 3 | |
6 | ipsstrd.s | . . 3 | |
7 | ipsstrd.x | . . 3 | |
8 | ipsstrd.i | . . 3 | |
9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 12302 | . 2 Struct |
10 | 1 | simpri 112 | . . . . 5 Scalar |
11 | opexg 4188 | . . . . 5 Scalar Scalar | |
12 | 10, 6, 11 | sylancr 411 | . . . 4 Scalar |
13 | tpid1g 3671 | . . . 4 Scalar Scalar Scalar | |
14 | elun2 3275 | . . . 4 Scalar Scalar Scalar Scalar | |
15 | 12, 13, 14 | 3syl 17 | . . 3 Scalar Scalar |
16 | 15, 2 | eleqtrrdi 2251 | . 2 Scalar |
17 | 1, 9, 6, 16 | opelstrsl 12257 | 1 Scalar |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 cvv 2712 cun 3100 ctp 3562 cop 3563 cfv 5169 c1 7727 cn 8827 c8 8884 cnx 12158 Slot cslot 12160 cbs 12161 cplusg 12223 cmulr 12224 Scalarcsca 12226 cvsca 12227 cip 12228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-tp 3568 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-5 8889 df-6 8890 df-7 8891 df-8 8892 df-n0 9085 df-z 9162 df-uz 9434 df-fz 9906 df-struct 12163 df-ndx 12164 df-slot 12165 df-base 12167 df-plusg 12236 df-mulr 12237 df-sca 12239 df-vsca 12240 df-ip 12241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |