ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsbased Unicode version

Theorem ipsbased 12951
Description: The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
ipsstrd.b  |-  ( ph  ->  B  e.  V )
ipsstrd.p  |-  ( ph  ->  .+  e.  W )
ipsstrd.r  |-  ( ph  ->  .X.  e.  X )
ipsstrd.s  |-  ( ph  ->  S  e.  Y )
ipsstrd.x  |-  ( ph  ->  .x.  e.  Q )
ipsstrd.i  |-  ( ph  ->  I  e.  Z )
Assertion
Ref Expression
ipsbased  |-  ( ph  ->  B  =  ( Base `  A ) )

Proof of Theorem ipsbased
StepHypRef Expression
1 ipspart.a . . 3  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
2 ipsstrd.b . . 3  |-  ( ph  ->  B  e.  V )
3 ipsstrd.p . . 3  |-  ( ph  ->  .+  e.  W )
4 ipsstrd.r . . 3  |-  ( ph  ->  .X.  e.  X )
5 ipsstrd.s . . 3  |-  ( ph  ->  S  e.  Y )
6 ipsstrd.x . . 3  |-  ( ph  ->  .x.  e.  Q )
7 ipsstrd.i . . 3  |-  ( ph  ->  I  e.  Z )
81, 2, 3, 4, 5, 6, 7ipsstrd 12950 . 2  |-  ( ph  ->  A Struct  <. 1 ,  8
>. )
9 basendxnn 12830 . . . . 5  |-  ( Base `  ndx )  e.  NN
10 opexg 4271 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
119, 2, 10sylancr 414 . . . 4  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
12 tpid1g 3744 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } )
13 elun1 3339 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  ->  <. ( Base `  ndx ) ,  B >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1411, 12, 133syl 17 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e.  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1514, 1eleqtrrdi 2298 . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e.  A )
168, 2, 15opelstrbas 12889 1  |-  ( ph  ->  B  =  ( Base `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    u. cun 3163   {ctp 3634   <.cop 3635   ` cfv 5270   1c1 7925   NNcn 9035   8c8 9092   ndxcnx 12771   Basecbs 12774   +g cplusg 12851   .rcmulr 12852  Scalarcsca 12854   .scvsca 12855   .icip 12856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-struct 12776  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator