ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr3 Unicode version

Theorem dftr3 4185
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
Distinct variable group:    x, A

Proof of Theorem dftr3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dftr5 4184 . 2  |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
2 dfss3 3213 . . 3  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
32ralbii 2536 . 2  |-  ( A. x  e.  A  x  C_  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
41, 3bitr4i 187 1  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   A.wral 2508    C_ wss 3197   Tr wtr 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182
This theorem is referenced by:  trss  4190  trin  4191  triun  4194  trint  4196  tron  4472  ssorduni  4578  pw1on  7407  bj-nntrans2  16273  bj-omtrans2  16278
  Copyright terms: Public domain W3C validator