ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr3 Unicode version

Theorem dftr3 4131
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
Distinct variable group:    x, A

Proof of Theorem dftr3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dftr5 4130 . 2  |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
2 dfss3 3169 . . 3  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
32ralbii 2500 . 2  |-  ( A. x  e.  A  x  C_  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
41, 3bitr4i 187 1  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   A.wral 2472    C_ wss 3153   Tr wtr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128
This theorem is referenced by:  trss  4136  trin  4137  triun  4140  trint  4142  tron  4413  ssorduni  4519  pw1on  7286  bj-nntrans2  15444  bj-omtrans2  15449
  Copyright terms: Public domain W3C validator