| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trsuc | Unicode version | ||
| Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| trsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 4450 |
. . . . . 6
| |
| 2 | ssexg 4172 |
. . . . . 6
| |
| 3 | 1, 2 | mpan 424 |
. . . . 5
|
| 4 | sucidg 4451 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | ancri 324 |
. . 3
|
| 7 | trel 4138 |
. . 3
| |
| 8 | 6, 7 | syl5 32 |
. 2
|
| 9 | 8 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-suc 4406 |
| This theorem is referenced by: nnnninf 7192 |
| Copyright terms: Public domain | W3C validator |