ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc Unicode version

Theorem trsuc 4400
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4393 . . . . . 6  |-  B  C_  suc  B
2 ssexg 4121 . . . . . 6  |-  ( ( B  C_  suc  B  /\  suc  B  e.  A )  ->  B  e.  _V )
31, 2mpan 421 . . . . 5  |-  ( suc 
B  e.  A  ->  B  e.  _V )
4 sucidg 4394 . . . . 5  |-  ( B  e.  _V  ->  B  e.  suc  B )
53, 4syl 14 . . . 4  |-  ( suc 
B  e.  A  ->  B  e.  suc  B )
65ancri 322 . . 3  |-  ( suc 
B  e.  A  -> 
( B  e.  suc  B  /\  suc  B  e.  A ) )
7 trel 4087 . . 3  |-  ( Tr  A  ->  ( ( B  e.  suc  B  /\  suc  B  e.  A )  ->  B  e.  A
) )
86, 7syl5 32 . 2  |-  ( Tr  A  ->  ( suc  B  e.  A  ->  B  e.  A ) )
98imp 123 1  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2726    C_ wss 3116   Tr wtr 4080   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-suc 4349
This theorem is referenced by:  nnnninf  7090
  Copyright terms: Public domain W3C validator