ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc Unicode version

Theorem trsuc 4469
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4462 . . . . . 6  |-  B  C_  suc  B
2 ssexg 4183 . . . . . 6  |-  ( ( B  C_  suc  B  /\  suc  B  e.  A )  ->  B  e.  _V )
31, 2mpan 424 . . . . 5  |-  ( suc 
B  e.  A  ->  B  e.  _V )
4 sucidg 4463 . . . . 5  |-  ( B  e.  _V  ->  B  e.  suc  B )
53, 4syl 14 . . . 4  |-  ( suc 
B  e.  A  ->  B  e.  suc  B )
65ancri 324 . . 3  |-  ( suc 
B  e.  A  -> 
( B  e.  suc  B  /\  suc  B  e.  A ) )
7 trel 4149 . . 3  |-  ( Tr  A  ->  ( ( B  e.  suc  B  /\  suc  B  e.  A )  ->  B  e.  A
) )
86, 7syl5 32 . 2  |-  ( Tr  A  ->  ( suc  B  e.  A  ->  B  e.  A ) )
98imp 124 1  |-  ( ( Tr  A  /\  suc  B  e.  A )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    C_ wss 3166   Tr wtr 4142   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-uni 3851  df-tr 4143  df-suc 4418
This theorem is referenced by:  nnnninf  7228
  Copyright terms: Public domain W3C validator