| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucidg | Unicode version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | olci 734 |
. 2
|
| 3 | elsucg 4451 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-suc 4418 |
| This theorem is referenced by: sucid 4464 nsuceq0g 4465 trsuc 4469 sucssel 4471 ordsucg 4550 sucunielr 4558 suc11g 4605 nlimsucg 4614 peano2b 4663 omsinds 4670 nnpredlt 4672 frecsuclem 6492 phplem4dom 6959 phplem4on 6964 dif1en 6976 fin0 6982 fin0or 6983 fidcenumlemrks 7055 bj-peano4 15891 |
| Copyright terms: Public domain | W3C validator |