| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucidg | Unicode version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | 1 | olci 733 |
. 2
|
| 3 | elsucg 4450 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-suc 4417 |
| This theorem is referenced by: sucid 4463 nsuceq0g 4464 trsuc 4468 sucssel 4470 ordsucg 4549 sucunielr 4557 suc11g 4604 nlimsucg 4613 peano2b 4662 omsinds 4669 nnpredlt 4671 frecsuclem 6491 phplem4dom 6958 phplem4on 6963 dif1en 6975 fin0 6981 fin0or 6982 fidcenumlemrks 7054 bj-peano4 15853 |
| Copyright terms: Public domain | W3C validator |