ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss Unicode version

Theorem trsucss 4514
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4494 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 trss 4191 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
3 eqimss 3278 . . . 4  |-  ( B  =  A  ->  B  C_  A )
43a1i 9 . . 3  |-  ( Tr  A  ->  ( B  =  A  ->  B  C_  A ) )
52, 4jaod 722 . 2  |-  ( Tr  A  ->  ( ( B  e.  A  \/  B  =  A )  ->  B  C_  A )
)
61, 5syl5 32 1  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   Tr wtr 4182   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-uni 3889  df-tr 4183  df-suc 4462
This theorem is referenced by:  onsucsssucr  4601  ordpwsucss  4659  nnnninfeq  7295  bj-el2oss1o  16138  nnsf  16371
  Copyright terms: Public domain W3C validator