ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss Unicode version

Theorem trsucss 4435
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4415 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 trss 4122 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
3 eqimss 3221 . . . 4  |-  ( B  =  A  ->  B  C_  A )
43a1i 9 . . 3  |-  ( Tr  A  ->  ( B  =  A  ->  B  C_  A ) )
52, 4jaod 718 . 2  |-  ( Tr  A  ->  ( ( B  e.  A  \/  B  =  A )  ->  B  C_  A )
)
61, 5syl5 32 1  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1363    e. wcel 2158    C_ wss 3141   Tr wtr 4113   suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-uni 3822  df-tr 4114  df-suc 4383
This theorem is referenced by:  onsucsssucr  4520  ordpwsucss  4578  nnnninfeq  7140  bj-el2oss1o  14822  nnsf  15051
  Copyright terms: Public domain W3C validator