ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss Unicode version

Theorem trsucss 4425
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4405 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 trss 4112 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
3 eqimss 3211 . . . 4  |-  ( B  =  A  ->  B  C_  A )
43a1i 9 . . 3  |-  ( Tr  A  ->  ( B  =  A  ->  B  C_  A ) )
52, 4jaod 717 . 2  |-  ( Tr  A  ->  ( ( B  e.  A  \/  B  =  A )  ->  B  C_  A )
)
61, 5syl5 32 1  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    = wceq 1353    e. wcel 2148    C_ wss 3131   Tr wtr 4103   suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-uni 3812  df-tr 4104  df-suc 4373
This theorem is referenced by:  onsucsssucr  4510  ordpwsucss  4568  nnnninfeq  7129  bj-el2oss1o  14666  nnsf  14894
  Copyright terms: Public domain W3C validator