ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss Unicode version

Theorem trsucss 4345
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4325 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 trss 4035 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
3 eqimss 3151 . . . 4  |-  ( B  =  A  ->  B  C_  A )
43a1i 9 . . 3  |-  ( Tr  A  ->  ( B  =  A  ->  B  C_  A ) )
52, 4jaod 706 . 2  |-  ( Tr  A  ->  ( ( B  e.  A  \/  B  =  A )  ->  B  C_  A )
)
61, 5syl5 32 1  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 697    = wceq 1331    e. wcel 1480    C_ wss 3071   Tr wtr 4026   suc csuc 4287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-uni 3737  df-tr 4027  df-suc 4293
This theorem is referenced by:  onsucsssucr  4425  ordpwsucss  4482  bj-el2oss1o  13040  nnsf  13260  nninfalllemn  13263
  Copyright terms: Public domain W3C validator