ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsucss Unicode version

Theorem trsucss 4488
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 4468 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 trss 4167 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
3 eqimss 3255 . . . 4  |-  ( B  =  A  ->  B  C_  A )
43a1i 9 . . 3  |-  ( Tr  A  ->  ( B  =  A  ->  B  C_  A ) )
52, 4jaod 719 . 2  |-  ( Tr  A  ->  ( ( B  e.  A  \/  B  =  A )  ->  B  C_  A )
)
61, 5syl5 32 1  |-  ( Tr  A  ->  ( B  e.  suc  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178    C_ wss 3174   Tr wtr 4158   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-uni 3865  df-tr 4159  df-suc 4436
This theorem is referenced by:  onsucsssucr  4575  ordpwsucss  4633  nnnninfeq  7256  bj-el2oss1o  15910  nnsf  16144
  Copyright terms: Public domain W3C validator