ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid Unicode version

Theorem sssucid 4480
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid  |-  A  C_  suc  A

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3344 . 2  |-  A  C_  ( A  u.  { A } )
2 df-suc 4436 . 2  |-  suc  A  =  ( A  u.  { A } )
31, 2sseqtrri 3236 1  |-  A  C_  suc  A
Colors of variables: wff set class
Syntax hints:    u. cun 3172    C_ wss 3174   {csn 3643   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-suc 4436
This theorem is referenced by:  trsuc  4487  ordsuc  4629  0elnn  4685  sucinc  6554  sucinc2  6555  oasuc  6573  phplem4  6977  phplem4dom  6984  phplem4on  6990  fiintim  7054  fidcenumlemrk  7082  fidcenumlemr  7083  bj-nntrans  16086
  Copyright terms: Public domain W3C validator