Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sssucid | Unicode version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3290 | . 2 | |
2 | df-suc 4356 | . 2 | |
3 | 1, 2 | sseqtrri 3182 | 1 |
Colors of variables: wff set class |
Syntax hints: cun 3119 wss 3121 csn 3583 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-suc 4356 |
This theorem is referenced by: trsuc 4407 ordsuc 4547 0elnn 4603 sucinc 6424 sucinc2 6425 oasuc 6443 phplem4 6833 phplem4dom 6840 phplem4on 6845 fiintim 6906 fidcenumlemrk 6931 fidcenumlemr 6932 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |