![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un4 | GIF version |
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
un4 | ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un12 3295 | . . 3 ⊢ (𝐵 ∪ (𝐶 ∪ 𝐷)) = (𝐶 ∪ (𝐵 ∪ 𝐷)) | |
2 | 1 | uneq2i 3288 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) |
3 | unass 3294 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) | |
4 | unass 3294 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2208 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 |
This theorem is referenced by: unundi 3298 unundir 3299 xpun 4689 resasplitss 5397 |
Copyright terms: Public domain | W3C validator |