| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifabs | GIF version | ||
| Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
| Ref | Expression |
|---|---|
| undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3214 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | difss 3300 | . . 3 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | unssi 3349 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
| 4 | ssun1 3337 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ (𝐴 ∖ 𝐵)) | |
| 5 | 3, 4 | eqssi 3210 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∖ cdif 3164 ∪ cun 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 |
| This theorem is referenced by: exmid1stab 4256 |
| Copyright terms: Public domain | W3C validator |