ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifabs GIF version

Theorem undifabs 3527
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 ssid 3203 . . 3 𝐴𝐴
2 difss 3289 . . 3 (𝐴𝐵) ⊆ 𝐴
31, 2unssi 3338 . 2 (𝐴 ∪ (𝐴𝐵)) ⊆ 𝐴
4 ssun1 3326 . 2 𝐴 ⊆ (𝐴 ∪ (𝐴𝐵))
53, 4eqssi 3199 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cdif 3154  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  exmid1stab  4241
  Copyright terms: Public domain W3C validator