ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifabs GIF version

Theorem undifabs 3501
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 ssid 3177 . . 3 𝐴𝐴
2 difss 3263 . . 3 (𝐴𝐵) ⊆ 𝐴
31, 2unssi 3312 . 2 (𝐴 ∪ (𝐴𝐵)) ⊆ 𝐴
4 ssun1 3300 . 2 𝐴 ⊆ (𝐴 ∪ (𝐴𝐵))
53, 4eqssi 3173 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cdif 3128  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by:  exmid1stab  4210
  Copyright terms: Public domain W3C validator