![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > undifabs | GIF version |
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
Ref | Expression |
---|---|
undifabs | ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3200 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | difss 3286 | . . 3 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | 1, 2 | unssi 3335 | . 2 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) ⊆ 𝐴 |
4 | ssun1 3323 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ (𝐴 ∖ 𝐵)) | |
5 | 3, 4 | eqssi 3196 | 1 ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∖ cdif 3151 ∪ cun 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 |
This theorem is referenced by: exmid1stab 4238 |
Copyright terms: Public domain | W3C validator |