| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 |
|
| eqssi.2 |
|
| Ref | Expression |
|---|---|
| eqssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 |
. 2
| |
| 2 | eqssi.2 |
. 2
| |
| 3 | eqss 3199 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: inv1 3488 unv 3489 undifabs 3528 intab 3904 intid 4258 find 4636 limom 4651 dmv 4883 0ima 5030 rnxpid 5105 dftpos4 6330 axaddf 7952 axmulf 7953 dfuzi 9453 unirnioo 10065 0bits 12141 4sqlem19 12603 txuni2 14576 dvef 15047 reeff1o 15093 |
| Copyright terms: Public domain | W3C validator |