![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 |
![]() ![]() ![]() ![]() |
eqssi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqssi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqssi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqss 3195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: inv1 3484 unv 3485 undifabs 3524 intab 3900 intid 4254 find 4632 limom 4647 dmv 4879 0ima 5026 rnxpid 5101 dftpos4 6318 axaddf 7930 axmulf 7931 dfuzi 9430 unirnioo 10042 4sqlem19 12550 txuni2 14435 dvef 14906 reeff1o 14949 |
Copyright terms: Public domain | W3C validator |