ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqssi Unicode version

Theorem eqssi 3172
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1  |-  A  C_  B
eqssi.2  |-  B  C_  A
Assertion
Ref Expression
eqssi  |-  A  =  B

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2  |-  A  C_  B
2 eqssi.2 . 2  |-  B  C_  A
3 eqss 3171 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
41, 2, 3mpbir2an 942 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143
This theorem is referenced by:  inv1  3460  unv  3461  undifabs  3500  intab  3874  intid  4225  find  4599  limom  4614  dmv  4844  0ima  4989  rnxpid  5064  dftpos4  6264  axaddf  7867  axmulf  7868  dfuzi  9363  unirnioo  9973  txuni2  13759  dvef  14191  reeff1o  14197
  Copyright terms: Public domain W3C validator