![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 |
![]() ![]() ![]() ![]() |
eqssi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqssi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqssi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqss 3041 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 889 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 |
This theorem is referenced by: inv1 3323 unv 3324 undifabs 3363 intab 3723 intid 4060 find 4427 limom 4441 dmv 4665 0ima 4805 rnxpid 4878 dftpos4 6042 djuun 6814 dfuzi 8910 unirnioo 9445 |
Copyright terms: Public domain | W3C validator |