ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqssi Unicode version

Theorem eqssi 3240
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1  |-  A  C_  B
eqssi.2  |-  B  C_  A
Assertion
Ref Expression
eqssi  |-  A  =  B

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2  |-  A  C_  B
2 eqssi.2 . 2  |-  B  C_  A
3 eqss 3239 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
41, 2, 3mpbir2an 948 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  inv1  3528  unv  3529  undifabs  3568  intab  3952  intid  4310  find  4691  limom  4706  dmv  4939  0ima  5088  rnxpid  5163  dftpos4  6409  axaddf  8055  axmulf  8056  dfuzi  9557  unirnioo  10169  0bits  12470  4sqlem19  12932  txuni2  14930  dvef  15401  reeff1o  15447
  Copyright terms: Public domain W3C validator