| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 |
|
| eqssi.2 |
|
| Ref | Expression |
|---|---|
| eqssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 |
. 2
| |
| 2 | eqssi.2 |
. 2
| |
| 3 | eqss 3239 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: inv1 3528 unv 3529 undifabs 3568 intab 3952 intid 4310 find 4691 limom 4706 dmv 4939 0ima 5088 rnxpid 5163 dftpos4 6409 axaddf 8055 axmulf 8056 dfuzi 9557 unirnioo 10169 0bits 12470 4sqlem19 12932 txuni2 14930 dvef 15401 reeff1o 15447 |
| Copyright terms: Public domain | W3C validator |