| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 |
|
| eqssi.2 |
|
| Ref | Expression |
|---|---|
| eqssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 |
. 2
| |
| 2 | eqssi.2 |
. 2
| |
| 3 | eqss 3198 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: inv1 3487 unv 3488 undifabs 3527 intab 3903 intid 4257 find 4635 limom 4650 dmv 4882 0ima 5029 rnxpid 5104 dftpos4 6321 axaddf 7935 axmulf 7936 dfuzi 9436 unirnioo 10048 4sqlem19 12578 txuni2 14492 dvef 14963 reeff1o 15009 |
| Copyright terms: Public domain | W3C validator |