![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 |
![]() ![]() ![]() ![]() |
eqssi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqssi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqssi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqss 3194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: inv1 3483 unv 3484 undifabs 3523 intab 3899 intid 4253 find 4631 limom 4646 dmv 4878 0ima 5025 rnxpid 5100 dftpos4 6316 axaddf 7928 axmulf 7929 dfuzi 9427 unirnioo 10039 4sqlem19 12547 txuni2 14424 dvef 14873 reeff1o 14908 |
Copyright terms: Public domain | W3C validator |