ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0c Unicode version

Theorem uni0c 3837
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c  |-  ( U. A  =  (/)  <->  A. x  e.  A  x  =  (/) )
Distinct variable group:    x, A

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 3836 . 2  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
2 dfss3 3147 . 2  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  e.  {
(/) } )
3 velsn 3611 . . 3  |-  ( x  e.  { (/) }  <->  x  =  (/) )
43ralbii 2483 . 2  |-  ( A. x  e.  A  x  e.  { (/) }  <->  A. x  e.  A  x  =  (/) )
51, 2, 43bitri 206 1  |-  ( U. A  =  (/)  <->  A. x  e.  A  x  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   (/)c0 3424   {csn 3594   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-uni 3812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator