ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0c Unicode version

Theorem uni0c 3875
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c  |-  ( U. A  =  (/)  <->  A. x  e.  A  x  =  (/) )
Distinct variable group:    x, A

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 3874 . 2  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
2 dfss3 3181 . 2  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  e.  {
(/) } )
3 velsn 3649 . . 3  |-  ( x  e.  { (/) }  <->  x  =  (/) )
43ralbii 2511 . 2  |-  ( A. x  e.  A  x  e.  { (/) }  <->  A. x  e.  A  x  =  (/) )
51, 2, 43bitri 206 1  |-  ( U. A  =  (/)  <->  A. x  e.  A  x  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483    C_ wss 3165   (/)c0 3459   {csn 3632   U.cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-uni 3850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator