| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uni0c | Unicode version | ||
| Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| uni0c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0b 3864 |
. 2
| |
| 2 | dfss3 3173 |
. 2
| |
| 3 | velsn 3639 |
. . 3
| |
| 4 | 3 | ralbii 2503 |
. 2
|
| 5 | 1, 2, 4 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-uni 3840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |