Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uni0b | Unicode version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3427 | . . . 4 | |
2 | 1 | ralbii 2472 | . . 3 |
3 | ralcom4 2748 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | dfss3 3132 | . . 3 | |
6 | velsn 3593 | . . . 4 | |
7 | 6 | ralbii 2472 | . . 3 |
8 | 5, 7 | bitri 183 | . 2 |
9 | eluni2 3793 | . . . . 5 | |
10 | 9 | notbii 658 | . . . 4 |
11 | 10 | albii 1458 | . . 3 |
12 | eq0 3427 | . . 3 | |
13 | ralnex 2454 | . . . 4 | |
14 | 13 | albii 1458 | . . 3 |
15 | 11, 12, 14 | 3bitr4i 211 | . 2 |
16 | 4, 8, 15 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 c0 3409 csn 3576 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-uni 3790 |
This theorem is referenced by: uni0c 3815 uni0 3816 |
Copyright terms: Public domain | W3C validator |