ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0b Unicode version

Theorem uni0b 3860
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )

Proof of Theorem uni0b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3465 . . . 4  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
21ralbii 2500 . . 3  |-  ( A. x  e.  A  x  =  (/)  <->  A. x  e.  A  A. y  -.  y  e.  x )
3 ralcom4 2782 . . 3  |-  ( A. x  e.  A  A. y  -.  y  e.  x  <->  A. y A. x  e.  A  -.  y  e.  x )
42, 3bitri 184 . 2  |-  ( A. x  e.  A  x  =  (/)  <->  A. y A. x  e.  A  -.  y  e.  x )
5 dfss3 3169 . . 3  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  e.  {
(/) } )
6 velsn 3635 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
76ralbii 2500 . . 3  |-  ( A. x  e.  A  x  e.  { (/) }  <->  A. x  e.  A  x  =  (/) )
85, 7bitri 184 . 2  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  =  (/) )
9 eluni2 3839 . . . . 5  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
109notbii 669 . . . 4  |-  ( -.  y  e.  U. A  <->  -. 
E. x  e.  A  y  e.  x )
1110albii 1481 . . 3  |-  ( A. y  -.  y  e.  U. A 
<-> 
A. y  -.  E. x  e.  A  y  e.  x )
12 eq0 3465 . . 3  |-  ( U. A  =  (/)  <->  A. y  -.  y  e.  U. A
)
13 ralnex 2482 . . . 4  |-  ( A. x  e.  A  -.  y  e.  x  <->  -.  E. x  e.  A  y  e.  x )
1413albii 1481 . . 3  |-  ( A. y A. x  e.  A  -.  y  e.  x  <->  A. y  -.  E. x  e.  A  y  e.  x )
1511, 12, 143bitr4i 212 . 2  |-  ( U. A  =  (/)  <->  A. y A. x  e.  A  -.  y  e.  x
)
164, 8, 153bitr4ri 213 1  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   (/)c0 3446   {csn 3618   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-uni 3836
This theorem is referenced by:  uni0c  3861  uni0  3862
  Copyright terms: Public domain W3C validator