| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uni0b | Unicode version | ||
| Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| uni0b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3487 |
. . . 4
| |
| 2 | 1 | ralbii 2514 |
. . 3
|
| 3 | ralcom4 2799 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | dfss3 3190 |
. . 3
| |
| 6 | velsn 3660 |
. . . 4
| |
| 7 | 6 | ralbii 2514 |
. . 3
|
| 8 | 5, 7 | bitri 184 |
. 2
|
| 9 | eluni2 3868 |
. . . . 5
| |
| 10 | 9 | notbii 670 |
. . . 4
|
| 11 | 10 | albii 1494 |
. . 3
|
| 12 | eq0 3487 |
. . 3
| |
| 13 | ralnex 2496 |
. . . 4
| |
| 14 | 13 | albii 1494 |
. . 3
|
| 15 | 11, 12, 14 | 3bitr4i 212 |
. 2
|
| 16 | 4, 8, 15 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-uni 3865 |
| This theorem is referenced by: uni0c 3890 uni0 3891 |
| Copyright terms: Public domain | W3C validator |