ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0b Unicode version

Theorem uni0b 3769
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
Assertion
Ref Expression
uni0b  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )

Proof of Theorem uni0b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3386 . . . 4  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
21ralbii 2444 . . 3  |-  ( A. x  e.  A  x  =  (/)  <->  A. x  e.  A  A. y  -.  y  e.  x )
3 ralcom4 2711 . . 3  |-  ( A. x  e.  A  A. y  -.  y  e.  x  <->  A. y A. x  e.  A  -.  y  e.  x )
42, 3bitri 183 . 2  |-  ( A. x  e.  A  x  =  (/)  <->  A. y A. x  e.  A  -.  y  e.  x )
5 dfss3 3092 . . 3  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  e.  {
(/) } )
6 velsn 3549 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
76ralbii 2444 . . 3  |-  ( A. x  e.  A  x  e.  { (/) }  <->  A. x  e.  A  x  =  (/) )
85, 7bitri 183 . 2  |-  ( A 
C_  { (/) }  <->  A. x  e.  A  x  =  (/) )
9 eluni2 3748 . . . . 5  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
109notbii 658 . . . 4  |-  ( -.  y  e.  U. A  <->  -. 
E. x  e.  A  y  e.  x )
1110albii 1447 . . 3  |-  ( A. y  -.  y  e.  U. A 
<-> 
A. y  -.  E. x  e.  A  y  e.  x )
12 eq0 3386 . . 3  |-  ( U. A  =  (/)  <->  A. y  -.  y  e.  U. A
)
13 ralnex 2427 . . . 4  |-  ( A. x  e.  A  -.  y  e.  x  <->  -.  E. x  e.  A  y  e.  x )
1413albii 1447 . . 3  |-  ( A. y A. x  e.  A  -.  y  e.  x  <->  A. y  -.  E. x  e.  A  y  e.  x )
1511, 12, 143bitr4i 211 . 2  |-  ( U. A  =  (/)  <->  A. y A. x  e.  A  -.  y  e.  x
)
164, 8, 153bitr4ri 212 1  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   (/)c0 3368   {csn 3532   U.cuni 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-uni 3745
This theorem is referenced by:  uni0c  3770  uni0  3771
  Copyright terms: Public domain W3C validator