| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uni0b | Unicode version | ||
| Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| uni0b | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eq0 3469 | 
. . . 4
 | |
| 2 | 1 | ralbii 2503 | 
. . 3
 | 
| 3 | ralcom4 2785 | 
. . 3
 | |
| 4 | 2, 3 | bitri 184 | 
. 2
 | 
| 5 | dfss3 3173 | 
. . 3
 | |
| 6 | velsn 3639 | 
. . . 4
 | |
| 7 | 6 | ralbii 2503 | 
. . 3
 | 
| 8 | 5, 7 | bitri 184 | 
. 2
 | 
| 9 | eluni2 3843 | 
. . . . 5
 | |
| 10 | 9 | notbii 669 | 
. . . 4
 | 
| 11 | 10 | albii 1484 | 
. . 3
 | 
| 12 | eq0 3469 | 
. . 3
 | |
| 13 | ralnex 2485 | 
. . . 4
 | |
| 14 | 13 | albii 1484 | 
. . 3
 | 
| 15 | 11, 12, 14 | 3bitr4i 212 | 
. 2
 | 
| 16 | 4, 8, 15 | 3bitr4ri 213 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-uni 3840 | 
| This theorem is referenced by: uni0c 3865 uni0 3866 | 
| Copyright terms: Public domain | W3C validator |