| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | Unicode version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3189 |
. 2
| |
| 2 | df-ral 2491 |
. 2
| |
| 3 | 1, 2 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssrab 3279 eqsnm 3809 uni0b 3889 uni0c 3890 ssint 3915 ssiinf 3991 sspwuni 4026 dftr3 4162 tfis 4649 rninxp 5145 fnres 5412 eqfnfv3 5702 funimass3 5719 ffvresb 5766 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 exmidontriimlem3 7366 suplocsr 7957 4sqlem19 12847 imasaddfnlemg 13261 isbasis2g 14632 tgval2 14638 eltg2b 14641 tgss2 14666 basgen2 14668 bastop1 14670 unicld 14703 neipsm 14741 ssidcn 14797 bdss 15999 |
| Copyright terms: Public domain | W3C validator |