| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | Unicode version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 |
. 2
| |
| 2 | df-ral 2513 |
. 2
| |
| 3 | 1, 2 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssrab 3302 eqsnm 3833 uni0b 3913 uni0c 3914 ssint 3939 ssiinf 4015 sspwuni 4050 dftr3 4186 tfis 4675 rninxp 5172 fnres 5440 eqfnfv3 5734 funimass3 5751 ffvresb 5798 tfrlemibxssdm 6473 tfr1onlembxssdm 6489 tfrcllembxssdm 6502 exmidontriimlem3 7405 suplocsr 7996 4sqlem19 12932 imasaddfnlemg 13347 isbasis2g 14719 tgval2 14725 eltg2b 14728 tgss2 14753 basgen2 14755 bastop1 14757 unicld 14790 neipsm 14828 ssidcn 14884 bdss 16227 |
| Copyright terms: Public domain | W3C validator |