| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | Unicode version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. 2
| |
| 2 | df-ral 2489 |
. 2
| |
| 3 | 1, 2 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssrab 3271 eqsnm 3796 uni0b 3875 uni0c 3876 ssint 3901 ssiinf 3977 sspwuni 4012 dftr3 4146 tfis 4631 rninxp 5126 fnres 5392 eqfnfv3 5679 funimass3 5696 ffvresb 5743 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 exmidontriimlem3 7335 suplocsr 7922 4sqlem19 12732 imasaddfnlemg 13146 isbasis2g 14517 tgval2 14523 eltg2b 14526 tgss2 14551 basgen2 14553 bastop1 14555 unicld 14588 neipsm 14626 ssidcn 14682 bdss 15804 |
| Copyright terms: Public domain | W3C validator |