Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss3 | Unicode version |
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
dfss3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3117 | . 2 | |
2 | df-ral 2440 | . 2 | |
3 | 1, 2 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wcel 2128 wral 2435 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-ral 2440 df-in 3108 df-ss 3115 |
This theorem is referenced by: ssrab 3206 eqsnm 3720 uni0b 3799 uni0c 3800 ssint 3825 ssiinf 3900 sspwuni 3935 dftr3 4069 tfis 4545 rninxp 5032 fnres 5289 eqfnfv3 5570 funimass3 5586 ffvresb 5633 tfrlemibxssdm 6277 tfr1onlembxssdm 6293 tfrcllembxssdm 6306 exmidontriimlem3 7161 suplocsr 7732 isbasis2g 12539 tgval2 12547 eltg2b 12550 tgss2 12575 basgen2 12577 bastop1 12579 unicld 12612 neipsm 12650 ssidcn 12706 bdss 13536 |
Copyright terms: Public domain | W3C validator |