| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | Unicode version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. 2
| |
| 2 | df-ral 2489 |
. 2
| |
| 3 | 1, 2 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssrab 3271 eqsnm 3796 uni0b 3875 uni0c 3876 ssint 3901 ssiinf 3977 sspwuni 4012 dftr3 4147 tfis 4632 rninxp 5127 fnres 5394 eqfnfv3 5681 funimass3 5698 ffvresb 5745 tfrlemibxssdm 6415 tfr1onlembxssdm 6431 tfrcllembxssdm 6444 exmidontriimlem3 7337 suplocsr 7924 4sqlem19 12765 imasaddfnlemg 13179 isbasis2g 14550 tgval2 14556 eltg2b 14559 tgss2 14584 basgen2 14586 bastop1 14588 unicld 14621 neipsm 14659 ssidcn 14715 bdss 15837 |
| Copyright terms: Public domain | W3C validator |