ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3 Unicode version

Theorem dfss3 3213
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
dfss3  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfss3
StepHypRef Expression
1 ssalel 3212 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
2 df-ral 2513 . 2  |-  ( A. x  e.  A  x  e.  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
31, 2bitr4i 187 1  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    e. wcel 2200   A.wral 2508    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210
This theorem is referenced by:  ssrab  3302  eqsnm  3833  uni0b  3913  uni0c  3914  ssint  3939  ssiinf  4015  sspwuni  4050  dftr3  4186  tfis  4675  rninxp  5172  fnres  5440  eqfnfv3  5734  funimass3  5751  ffvresb  5798  tfrlemibxssdm  6473  tfr1onlembxssdm  6489  tfrcllembxssdm  6502  exmidontriimlem3  7405  suplocsr  7996  4sqlem19  12932  imasaddfnlemg  13347  isbasis2g  14719  tgval2  14725  eltg2b  14728  tgss2  14753  basgen2  14755  bastop1  14757  unicld  14790  neipsm  14828  ssidcn  14884  bdss  16227
  Copyright terms: Public domain W3C validator