ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3 Unicode version

Theorem dfss3 3190
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
dfss3  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfss3
StepHypRef Expression
1 ssalel 3189 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
2 df-ral 2491 . 2  |-  ( A. x  e.  A  x  e.  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
31, 2bitr4i 187 1  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2178   A.wral 2486    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-in 3180  df-ss 3187
This theorem is referenced by:  ssrab  3279  eqsnm  3809  uni0b  3889  uni0c  3890  ssint  3915  ssiinf  3991  sspwuni  4026  dftr3  4162  tfis  4649  rninxp  5145  fnres  5412  eqfnfv3  5702  funimass3  5719  ffvresb  5766  tfrlemibxssdm  6436  tfr1onlembxssdm  6452  tfrcllembxssdm  6465  exmidontriimlem3  7366  suplocsr  7957  4sqlem19  12847  imasaddfnlemg  13261  isbasis2g  14632  tgval2  14638  eltg2b  14641  tgss2  14666  basgen2  14668  bastop1  14670  unicld  14703  neipsm  14741  ssidcn  14797  bdss  15999
  Copyright terms: Public domain W3C validator