![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uni0c | GIF version |
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0b 3652 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
2 | dfss3 3000 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
3 | velsn 3439 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | ralbii 2378 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
5 | 1, 2, 4 | 3bitri 204 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∀wral 2353 ⊆ wss 2984 ∅c0 3269 {csn 3422 ∪ cuni 3627 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-dif 2986 df-in 2990 df-ss 2997 df-nul 3270 df-sn 3428 df-uni 3628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |