ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0c GIF version

Theorem uni0c 3865
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 3864 . 2 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
2 dfss3 3173 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
3 velsn 3639 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43ralbii 2503 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
51, 2, 43bitri 206 1 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  wral 2475  wss 3157  c0 3450  {csn 3622   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator