| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unidif | GIF version | ||
| Description: If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| unidif | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss2 3886 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵)) | |
| 2 | difss 3303 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | 2 | unissi 3878 | . . 3 ⊢ ∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 |
| 4 | 1, 3 | jctil 312 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) |
| 5 | eqss 3212 | . 2 ⊢ (∪ (𝐴 ∖ 𝐵) = ∪ 𝐴 ↔ (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∀wral 2485 ∃wrex 2486 ∖ cdif 3167 ⊆ wss 3170 ∪ cuni 3855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-uni 3856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |