![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unidif | GIF version |
Description: If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
unidif | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 3690 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵)) | |
2 | difss 3127 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | 2 | unissi 3682 | . . 3 ⊢ ∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 |
4 | 1, 3 | jctil 306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) |
5 | eqss 3041 | . 2 ⊢ (∪ (𝐴 ∖ 𝐵) = ∪ 𝐴 ↔ (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∀wral 2360 ∃wrex 2361 ∖ cdif 2997 ⊆ wss 3000 ∪ cuni 3659 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-dif 3002 df-in 3006 df-ss 3013 df-uni 3660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |