Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unidif | GIF version |
Description: If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
unidif | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 3820 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵)) | |
2 | difss 3248 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | 2 | unissi 3812 | . . 3 ⊢ ∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 |
4 | 1, 3 | jctil 310 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) |
5 | eqss 3157 | . 2 ⊢ (∪ (𝐴 ∖ 𝐵) = ∪ 𝐴 ↔ (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∀wral 2444 ∃wrex 2445 ∖ cdif 3113 ⊆ wss 3116 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |