ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssunieq Unicode version

Theorem ssunieq 3822
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  ->  A  =  U. B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3817 . . 3  |-  ( A  e.  B  ->  A  C_ 
U. B )
2 unissb 3819 . . . 4  |-  ( U. B  C_  A  <->  A. x  e.  B  x  C_  A
)
32biimpri 132 . . 3  |-  ( A. x  e.  B  x  C_  A  ->  U. B  C_  A )
41, 3anim12i 336 . 2  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  -> 
( A  C_  U. B  /\  U. B  C_  A
) )
5 eqss 3157 . 2  |-  ( A  =  U. B  <->  ( A  C_ 
U. B  /\  U. B  C_  A ) )
64, 5sylibr 133 1  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  ->  A  =  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790
This theorem is referenced by:  unimax  3823  hashinfuni  10690  hashennnuni  10692
  Copyright terms: Public domain W3C validator