ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissi Unicode version

Theorem unissi 3873
Description: Subclass relationship for subclass union. Inference form of uniss 3871. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissi.1  |-  A  C_  B
Assertion
Ref Expression
unissi  |-  U. A  C_ 
U. B

Proof of Theorem unissi
StepHypRef Expression
1 unissi.1 . 2  |-  A  C_  B
2 uniss 3871 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2ax-mp 5 1  |-  U. A  C_ 
U. B
Colors of variables: wff set class
Syntax hints:    C_ wss 3166   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851
This theorem is referenced by:  unidif  3882  unixpss  4788  tfrcllemssrecs  6438  tgvalex  13095  tgval2  14523  eltg4i  14527  ntrss2  14593  isopn3  14597
  Copyright terms: Public domain W3C validator