ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl3gf Unicode version

Theorem vtocl3gf 2836
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtocl3gf.a  |-  F/_ x A
vtocl3gf.b  |-  F/_ y A
vtocl3gf.c  |-  F/_ z A
vtocl3gf.d  |-  F/_ y B
vtocl3gf.e  |-  F/_ z B
vtocl3gf.f  |-  F/_ z C
vtocl3gf.1  |-  F/ x ps
vtocl3gf.2  |-  F/ y ch
vtocl3gf.3  |-  F/ z th
vtocl3gf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl3gf.5  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl3gf.6  |-  ( z  =  C  ->  ( ch 
<->  th ) )
vtocl3gf.7  |-  ph
Assertion
Ref Expression
vtocl3gf  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  th )

Proof of Theorem vtocl3gf
StepHypRef Expression
1 elex 2783 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 vtocl3gf.d . . . 4  |-  F/_ y B
3 vtocl3gf.e . . . 4  |-  F/_ z B
4 vtocl3gf.f . . . 4  |-  F/_ z C
5 vtocl3gf.b . . . . . 6  |-  F/_ y A
65nfel1 2359 . . . . 5  |-  F/ y  A  e.  _V
7 vtocl3gf.2 . . . . 5  |-  F/ y ch
86, 7nfim 1595 . . . 4  |-  F/ y ( A  e.  _V  ->  ch )
9 vtocl3gf.c . . . . . 6  |-  F/_ z A
109nfel1 2359 . . . . 5  |-  F/ z  A  e.  _V
11 vtocl3gf.3 . . . . 5  |-  F/ z th
1210, 11nfim 1595 . . . 4  |-  F/ z ( A  e.  _V  ->  th )
13 vtocl3gf.5 . . . . 5  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1413imbi2d 230 . . . 4  |-  ( y  =  B  ->  (
( A  e.  _V  ->  ps )  <->  ( A  e.  _V  ->  ch )
) )
15 vtocl3gf.6 . . . . 5  |-  ( z  =  C  ->  ( ch 
<->  th ) )
1615imbi2d 230 . . . 4  |-  ( z  =  C  ->  (
( A  e.  _V  ->  ch )  <->  ( A  e.  _V  ->  th )
) )
17 vtocl3gf.a . . . . 5  |-  F/_ x A
18 vtocl3gf.1 . . . . 5  |-  F/ x ps
19 vtocl3gf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
20 vtocl3gf.7 . . . . 5  |-  ph
2117, 18, 19, 20vtoclgf 2831 . . . 4  |-  ( A  e.  _V  ->  ps )
222, 3, 4, 8, 12, 14, 16, 21vtocl2gf 2835 . . 3  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( A  e.  _V  ->  th ) )
231, 22mpan9 281 . 2  |-  ( ( A  e.  V  /\  ( B  e.  W  /\  C  e.  X
) )  ->  th )
24233impb 1202 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   F/wnf 1483    e. wcel 2176   F/_wnfc 2335   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  vtocl3gaf  2842
  Copyright terms: Public domain W3C validator