ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2g Unicode version

Theorem vtocl2g 2842
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2g.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl2g.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl2g.3  |-  ph
Assertion
Ref Expression
vtocl2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
Distinct variable groups:    x, A    y, A    y, B    ps, x    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)    B( x)    V( x, y)    W( x, y)

Proof of Theorem vtocl2g
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ x A
2 nfcv 2350 . 2  |-  F/_ y A
3 nfcv 2350 . 2  |-  F/_ y B
4 nfv 1552 . 2  |-  F/ x ps
5 nfv 1552 . 2  |-  F/ y ch
6 vtocl2g.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
7 vtocl2g.2 . 2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
8 vtocl2g.3 . 2  |-  ph
91, 2, 3, 4, 5, 6, 7, 8vtocl2gf 2840 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  vtocl4g  2849  uniprg  3879  intprg  3932  opthg  4300  opelopabsb  4324  unexb  4507  vtoclr  4741  elimasng  5069  cnvsng  5187  funopg  5324  f1osng  5586  fsng  5776  fvsng  5803  op1stg  6259  op2ndg  6260  xpsneng  6942  xpcomeng  6948  mhmlem  13565  bdunexb  16055  bj-unexg  16056
  Copyright terms: Public domain W3C validator