Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2g | Unicode version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2g.1 | |
vtocl2g.2 | |
vtocl2g.3 |
Ref | Expression |
---|---|
vtocl2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2299 | . 2 | |
2 | nfcv 2299 | . 2 | |
3 | nfcv 2299 | . 2 | |
4 | nfv 1508 | . 2 | |
5 | nfv 1508 | . 2 | |
6 | vtocl2g.1 | . 2 | |
7 | vtocl2g.2 | . 2 | |
8 | vtocl2g.3 | . 2 | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2774 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: uniprg 3788 intprg 3841 opthg 4199 opelopabsb 4221 unexb 4403 vtoclr 4635 elimasng 4955 cnvsng 5072 funopg 5205 f1osng 5456 fsng 5641 fvsng 5664 op1stg 6099 op2ndg 6100 xpsneng 6768 xpcomeng 6774 bdunexb 13537 bj-unexg 13538 |
Copyright terms: Public domain | W3C validator |