Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2g | Unicode version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2g.1 | |
vtocl2g.2 | |
vtocl2g.3 |
Ref | Expression |
---|---|
vtocl2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 | |
2 | nfcv 2312 | . 2 | |
3 | nfcv 2312 | . 2 | |
4 | nfv 1521 | . 2 | |
5 | nfv 1521 | . 2 | |
6 | vtocl2g.1 | . 2 | |
7 | vtocl2g.2 | . 2 | |
8 | vtocl2g.3 | . 2 | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2792 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: uniprg 3811 intprg 3864 opthg 4223 opelopabsb 4245 unexb 4427 vtoclr 4659 elimasng 4979 cnvsng 5096 funopg 5232 f1osng 5483 fsng 5669 fvsng 5692 op1stg 6129 op2ndg 6130 xpsneng 6800 xpcomeng 6806 bdunexb 13955 bj-unexg 13956 |
Copyright terms: Public domain | W3C validator |