| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfel1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | 1, 2 | nfel 2357 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: vtocl2gf 2835 vtocl3gf 2836 vtoclgaf 2838 vtocl2gaf 2840 vtocl3gaf 2842 nfop 3835 pofun 4360 nfse 4389 rabxfrd 4517 mptfvex 5667 fvmptf 5674 fmptcof 5749 fliftfuns 5869 riota2f 5923 ovmpos 6071 ov2gf 6072 elovmporab 6148 elovmporab1w 6149 fmpox 6288 mpofvex 6293 qliftfuns 6708 xpf1o 6943 iunfidisj 7050 cc3 7382 infssuzcldc 10380 sumfct 11718 sumrbdclem 11721 summodclem3 11724 summodclem2a 11725 zsumdc 11728 fsumgcl 11730 fsum3 11731 isumss 11735 isumss2 11737 fsum3cvg2 11738 fsumsplitf 11752 fsum2dlemstep 11778 fisumcom2 11782 fsumshftm 11789 fisum0diag2 11791 fsummulc2 11792 fsum00 11806 fsumabs 11809 fsumrelem 11815 fsumiun 11821 isumshft 11834 mertenslem2 11880 prodrbdclem 11915 prodmodclem3 11919 prodmodclem2a 11920 zproddc 11923 fprodseq 11927 prodfct 11931 prodssdc 11933 fprodmul 11935 fprodm1s 11945 fprodp1s 11946 fprodcl2lem 11949 fprodabs 11960 fprod2dlemstep 11966 fprodcom2fi 11970 fprodrec 11973 fproddivapf 11975 fprodsplitf 11976 fprodsplit1f 11978 fprodle 11984 pcmpt 12699 pcmptdvds 12701 gsumfzfsumlemm 14382 iuncld 14620 fsumcncntop 15072 dvmptfsum 15230 |
| Copyright terms: Public domain | W3C validator |