![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfel1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfel 2345 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: vtocl2gf 2823 vtocl3gf 2824 vtoclgaf 2826 vtocl2gaf 2828 vtocl3gaf 2830 nfop 3821 pofun 4344 nfse 4373 rabxfrd 4501 mptfvex 5644 fvmptf 5651 fmptcof 5726 fliftfuns 5842 riota2f 5896 ovmpos 6043 ov2gf 6044 elovmporab 6120 elovmporab1w 6121 fmpox 6255 mpofvex 6260 qliftfuns 6675 xpf1o 6902 iunfidisj 7007 cc3 7330 sumfct 11520 sumrbdclem 11523 summodclem3 11526 summodclem2a 11527 zsumdc 11530 fsumgcl 11532 fsum3 11533 isumss 11537 isumss2 11539 fsum3cvg2 11540 fsumsplitf 11554 fsum2dlemstep 11580 fisumcom2 11584 fsumshftm 11591 fisum0diag2 11593 fsummulc2 11594 fsum00 11608 fsumabs 11611 fsumrelem 11617 fsumiun 11623 isumshft 11636 mertenslem2 11682 prodrbdclem 11717 prodmodclem3 11721 prodmodclem2a 11722 zproddc 11725 fprodseq 11729 prodfct 11733 prodssdc 11735 fprodmul 11737 fprodm1s 11747 fprodp1s 11748 fprodcl2lem 11751 fprodabs 11762 fprod2dlemstep 11768 fprodcom2fi 11772 fprodrec 11775 fproddivapf 11777 fprodsplitf 11778 fprodsplit1f 11780 fprodle 11786 infssuzcldc 12091 pcmpt 12484 pcmptdvds 12486 gsumfzfsumlemm 14086 iuncld 14294 fsumcncntop 14746 dvmptfsum 14904 |
Copyright terms: Public domain | W3C validator |