![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfel1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2329 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfel 2338 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-cleq 2180 df-clel 2183 df-nfc 2318 |
This theorem is referenced by: vtocl2gf 2811 vtocl3gf 2812 vtoclgaf 2814 vtocl2gaf 2816 vtocl3gaf 2818 nfop 3806 pofun 4324 nfse 4353 rabxfrd 4481 mptfvex 5614 fvmptf 5621 fmptcof 5696 fliftfuns 5812 riota2f 5865 ovmpos 6012 ov2gf 6013 fmpox 6215 mpofvex 6218 qliftfuns 6633 xpf1o 6858 iunfidisj 6959 cc3 7281 sumfct 11396 sumrbdclem 11399 summodclem3 11402 summodclem2a 11403 zsumdc 11406 fsumgcl 11408 fsum3 11409 isumss 11413 isumss2 11415 fsum3cvg2 11416 fsumsplitf 11430 fsum2dlemstep 11456 fisumcom2 11460 fsumshftm 11467 fisum0diag2 11469 fsummulc2 11470 fsum00 11484 fsumabs 11487 fsumrelem 11493 fsumiun 11499 isumshft 11512 mertenslem2 11558 prodrbdclem 11593 prodmodclem3 11597 prodmodclem2a 11598 zproddc 11601 fprodseq 11605 prodfct 11609 prodssdc 11611 fprodmul 11613 fprodm1s 11623 fprodp1s 11624 fprodcl2lem 11627 fprodabs 11638 fprod2dlemstep 11644 fprodcom2fi 11648 fprodrec 11651 fproddivapf 11653 fprodsplitf 11654 fprodsplit1f 11656 fprodle 11662 infssuzcldc 11966 pcmpt 12355 pcmptdvds 12357 iuncld 13911 fsumcncntop 14352 |
Copyright terms: Public domain | W3C validator |