| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfel1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2339 |
. 2
| |
| 3 | 1, 2 | nfel 2348 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 nfop 3825 pofun 4348 nfse 4377 rabxfrd 4505 mptfvex 5648 fvmptf 5655 fmptcof 5730 fliftfuns 5846 riota2f 5900 ovmpos 6048 ov2gf 6049 elovmporab 6125 elovmporab1w 6126 fmpox 6260 mpofvex 6265 qliftfuns 6680 xpf1o 6907 iunfidisj 7014 cc3 7338 infssuzcldc 10328 sumfct 11542 sumrbdclem 11545 summodclem3 11548 summodclem2a 11549 zsumdc 11552 fsumgcl 11554 fsum3 11555 isumss 11559 isumss2 11561 fsum3cvg2 11562 fsumsplitf 11576 fsum2dlemstep 11602 fisumcom2 11606 fsumshftm 11613 fisum0diag2 11615 fsummulc2 11616 fsum00 11630 fsumabs 11633 fsumrelem 11639 fsumiun 11645 isumshft 11658 mertenslem2 11704 prodrbdclem 11739 prodmodclem3 11743 prodmodclem2a 11744 zproddc 11747 fprodseq 11751 prodfct 11755 prodssdc 11757 fprodmul 11759 fprodm1s 11769 fprodp1s 11770 fprodcl2lem 11773 fprodabs 11784 fprod2dlemstep 11790 fprodcom2fi 11794 fprodrec 11797 fproddivapf 11799 fprodsplitf 11800 fprodsplit1f 11802 fprodle 11808 pcmpt 12523 pcmptdvds 12525 gsumfzfsumlemm 14169 iuncld 14377 fsumcncntop 14829 dvmptfsum 14987 |
| Copyright terms: Public domain | W3C validator |