| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfel1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | 1, 2 | nfel 2359 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: vtocl2gf 2840 vtocl3gf 2841 vtoclgaf 2843 vtocl2gaf 2845 vtocl3gaf 2847 nfop 3849 pofun 4377 nfse 4406 rabxfrd 4534 mptfvex 5688 fvmptf 5695 fmptcof 5770 fliftfuns 5890 riota2f 5944 ovmpos 6092 ov2gf 6093 elovmporab 6169 elovmporab1w 6170 fmpox 6309 mpofvex 6314 qliftfuns 6729 xpf1o 6966 iunfidisj 7074 cc3 7415 infssuzcldc 10415 sumfct 11800 sumrbdclem 11803 summodclem3 11806 summodclem2a 11807 zsumdc 11810 fsumgcl 11812 fsum3 11813 isumss 11817 isumss2 11819 fsum3cvg2 11820 fsumsplitf 11834 fsum2dlemstep 11860 fisumcom2 11864 fsumshftm 11871 fisum0diag2 11873 fsummulc2 11874 fsum00 11888 fsumabs 11891 fsumrelem 11897 fsumiun 11903 isumshft 11916 mertenslem2 11962 prodrbdclem 11997 prodmodclem3 12001 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 prodfct 12013 prodssdc 12015 fprodmul 12017 fprodm1s 12027 fprodp1s 12028 fprodcl2lem 12031 fprodabs 12042 fprod2dlemstep 12048 fprodcom2fi 12052 fprodrec 12055 fproddivapf 12057 fprodsplitf 12058 fprodsplit1f 12060 fprodle 12066 pcmpt 12781 pcmptdvds 12783 gsumfzfsumlemm 14464 iuncld 14702 fsumcncntop 15154 dvmptfsum 15312 |
| Copyright terms: Public domain | W3C validator |