![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfel1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2228 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfel 2237 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-cleq 2081 df-clel 2084 df-nfc 2217 |
This theorem is referenced by: vtocl2gf 2681 vtocl3gf 2682 vtoclgaf 2684 vtocl2gaf 2686 vtocl3gaf 2688 nfop 3638 pofun 4139 nfse 4168 rabxfrd 4291 mptfvex 5388 fvmptf 5395 fmptcof 5465 fliftfuns 5577 riota2f 5629 ovmpt2s 5768 ov2gf 5769 fmpt2x 5970 mpt2fvex 5973 qliftfuns 6374 xpf1o 6558 iunfidisj 6653 sumfct 10759 isumrblem 10761 isummolem3 10766 isummolem2a 10767 zisum 10770 fsumgcl 10773 fisum 10774 isumss 10779 isumss2 10781 fisumcvg2 10782 fsum3cvg2 10783 fsumsplitf 10798 isummulc2 10816 fsum2dlemstep 10824 fisumcom2 10828 fsumshftm 10835 fisum0diag2 10837 fsummulc2 10838 fsum00 10852 fsumabs 10855 fsumrelem 10861 fsumiun 10867 isumshft 10880 mertenslem2 10926 infssuzcldc 11221 |
Copyright terms: Public domain | W3C validator |