![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfel1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2319 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfel 2328 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: vtocl2gf 2799 vtocl3gf 2800 vtoclgaf 2802 vtocl2gaf 2804 vtocl3gaf 2806 nfop 3794 pofun 4312 nfse 4341 rabxfrd 4469 mptfvex 5601 fvmptf 5608 fmptcof 5683 fliftfuns 5798 riota2f 5851 ovmpos 5997 ov2gf 5998 fmpox 6200 mpofvex 6203 qliftfuns 6618 xpf1o 6843 iunfidisj 6944 cc3 7266 sumfct 11381 sumrbdclem 11384 summodclem3 11387 summodclem2a 11388 zsumdc 11391 fsumgcl 11393 fsum3 11394 isumss 11398 isumss2 11400 fsum3cvg2 11401 fsumsplitf 11415 fsum2dlemstep 11441 fisumcom2 11445 fsumshftm 11452 fisum0diag2 11454 fsummulc2 11455 fsum00 11469 fsumabs 11472 fsumrelem 11478 fsumiun 11484 isumshft 11497 mertenslem2 11543 prodrbdclem 11578 prodmodclem3 11582 prodmodclem2a 11583 zproddc 11586 fprodseq 11590 prodfct 11594 prodssdc 11596 fprodmul 11598 fprodm1s 11608 fprodp1s 11609 fprodcl2lem 11612 fprodabs 11623 fprod2dlemstep 11629 fprodcom2fi 11633 fprodrec 11636 fproddivapf 11638 fprodsplitf 11639 fprodsplit1f 11641 fprodle 11647 infssuzcldc 11951 pcmpt 12340 pcmptdvds 12342 iuncld 13585 fsumcncntop 14026 |
Copyright terms: Public domain | W3C validator |