| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | Unicode version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 |
|
| Ref | Expression |
|---|---|
| nfel1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | 1, 2 | nfel 2381 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: vtocl2gf 2863 vtocl3gf 2864 vtoclgaf 2866 vtocl2gaf 2868 vtocl3gaf 2870 nfop 3873 pofun 4403 nfse 4432 rabxfrd 4560 mptfvex 5720 fvmptf 5727 fmptcof 5802 fliftfuns 5922 riota2f 5977 ovmpos 6128 ov2gf 6129 elovmporab 6205 elovmporab1w 6206 fmpox 6346 mpofvex 6351 qliftfuns 6766 xpf1o 7005 iunfidisj 7113 cc3 7454 infssuzcldc 10455 sumfct 11885 sumrbdclem 11888 summodclem3 11891 summodclem2a 11892 zsumdc 11895 fsumgcl 11897 fsum3 11898 isumss 11902 isumss2 11904 fsum3cvg2 11905 fsumsplitf 11919 fsum2dlemstep 11945 fisumcom2 11949 fsumshftm 11956 fisum0diag2 11958 fsummulc2 11959 fsum00 11973 fsumabs 11976 fsumrelem 11982 fsumiun 11988 isumshft 12001 mertenslem2 12047 prodrbdclem 12082 prodmodclem3 12086 prodmodclem2a 12087 zproddc 12090 fprodseq 12094 prodfct 12098 prodssdc 12100 fprodmul 12102 fprodm1s 12112 fprodp1s 12113 fprodcl2lem 12116 fprodabs 12127 fprod2dlemstep 12133 fprodcom2fi 12137 fprodrec 12140 fproddivapf 12142 fprodsplitf 12143 fprodsplit1f 12145 fprodle 12151 pcmpt 12866 pcmptdvds 12868 gsumfzfsumlemm 14551 iuncld 14789 fsumcncntop 15241 dvmptfsum 15399 |
| Copyright terms: Public domain | W3C validator |