| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocl3gf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| vtocl3gf.a | ⊢ Ⅎ𝑥𝐴 | 
| vtocl3gf.b | ⊢ Ⅎ𝑦𝐴 | 
| vtocl3gf.c | ⊢ Ⅎ𝑧𝐴 | 
| vtocl3gf.d | ⊢ Ⅎ𝑦𝐵 | 
| vtocl3gf.e | ⊢ Ⅎ𝑧𝐵 | 
| vtocl3gf.f | ⊢ Ⅎ𝑧𝐶 | 
| vtocl3gf.1 | ⊢ Ⅎ𝑥𝜓 | 
| vtocl3gf.2 | ⊢ Ⅎ𝑦𝜒 | 
| vtocl3gf.3 | ⊢ Ⅎ𝑧𝜃 | 
| vtocl3gf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl3gf.5 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl3gf.6 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| vtocl3gf.7 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| vtocl3gf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl3gf.d | . . . 4 ⊢ Ⅎ𝑦𝐵 | |
| 3 | vtocl3gf.e | . . . 4 ⊢ Ⅎ𝑧𝐵 | |
| 4 | vtocl3gf.f | . . . 4 ⊢ Ⅎ𝑧𝐶 | |
| 5 | vtocl3gf.b | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 6 | 5 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑦 𝐴 ∈ V | 
| 7 | vtocl3gf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜒 | |
| 8 | 6, 7 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑦(𝐴 ∈ V → 𝜒) | 
| 9 | vtocl3gf.c | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 10 | 9 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑧 𝐴 ∈ V | 
| 11 | vtocl3gf.3 | . . . . 5 ⊢ Ⅎ𝑧𝜃 | |
| 12 | 10, 11 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑧(𝐴 ∈ V → 𝜃) | 
| 13 | vtocl3gf.5 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 14 | 13 | imbi2d 230 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) | 
| 15 | vtocl3gf.6 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 16 | 15 | imbi2d 230 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃))) | 
| 17 | vtocl3gf.a | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 18 | vtocl3gf.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 19 | vtocl3gf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 20 | vtocl3gf.7 | . . . . 5 ⊢ 𝜑 | |
| 21 | 17, 18, 19, 20 | vtoclgf 2822 | . . . 4 ⊢ (𝐴 ∈ V → 𝜓) | 
| 22 | 2, 3, 4, 8, 12, 14, 16, 21 | vtocl2gf 2826 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ V → 𝜃)) | 
| 23 | 1, 22 | mpan9 281 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → 𝜃) | 
| 24 | 23 | 3impb 1201 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: vtocl3gaf 2833 | 
| Copyright terms: Public domain | W3C validator |