ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vuniex Unicode version

Theorem vuniex 4469
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
Assertion
Ref Expression
vuniex  |-  U. x  e.  _V

Proof of Theorem vuniex
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
21uniex 4468 1  |-  U. x  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-uni 3836
This theorem is referenced by:  omp1eomlem  7153  distop  14253  epttop  14258  fncld  14266
  Copyright terms: Public domain W3C validator