ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vuniex Unicode version

Theorem vuniex 4423
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
Assertion
Ref Expression
vuniex  |-  U. x  e.  _V

Proof of Theorem vuniex
StepHypRef Expression
1 vex 2733 . 2  |-  x  e. 
_V
21uniex 4422 1  |-  U. x  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-uni 3797
This theorem is referenced by:  omp1eomlem  7071  distop  12879  epttop  12884  fncld  12892
  Copyright terms: Public domain W3C validator