ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncld Unicode version

Theorem fncld 12509
Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncld  |-  Clsd  Fn  Top

Proof of Theorem fncld
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 4398 . . . 4  |-  U. j  e.  _V
21pwex 4144 . . 3  |-  ~P U. j  e.  _V
32rabex 4108 . 2  |-  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j }  e.  _V
4 df-cld 12506 . 2  |-  Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
53, 4fnmpti 5298 1  |-  Clsd  Fn  Top
Colors of variables: wff set class
Syntax hints:    e. wcel 2128   {crab 2439    \ cdif 3099   ~Pcpw 3543   U.cuni 3772    Fn wfn 5165   Topctop 12406   Clsdccld 12503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-fun 5172  df-fn 5173  df-cld 12506
This theorem is referenced by:  cldrcl  12513
  Copyright terms: Public domain W3C validator