ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncld Unicode version

Theorem fncld 14766
Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncld  |-  Clsd  Fn  Top

Proof of Theorem fncld
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 4528 . . . 4  |-  U. j  e.  _V
21pwex 4266 . . 3  |-  ~P U. j  e.  _V
32rabex 4227 . 2  |-  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j }  e.  _V
4 df-cld 14763 . 2  |-  Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
53, 4fnmpti 5451 1  |-  Clsd  Fn  Top
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   {crab 2512    \ cdif 3194   ~Pcpw 3649   U.cuni 3887    Fn wfn 5312   Topctop 14665   Clsdccld 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320  df-cld 14763
This theorem is referenced by:  cldrcl  14770
  Copyright terms: Public domain W3C validator