ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncld Unicode version

Theorem fncld 12738
Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fncld  |-  Clsd  Fn  Top

Proof of Theorem fncld
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 4416 . . . 4  |-  U. j  e.  _V
21pwex 4162 . . 3  |-  ~P U. j  e.  _V
32rabex 4126 . 2  |-  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j }  e.  _V
4 df-cld 12735 . 2  |-  Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
53, 4fnmpti 5316 1  |-  Clsd  Fn  Top
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   {crab 2448    \ cdif 3113   ~Pcpw 3559   U.cuni 3789    Fn wfn 5183   Topctop 12635   Clsdccld 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191  df-cld 12735
This theorem is referenced by:  cldrcl  12742
  Copyright terms: Public domain W3C validator