| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vuniex | GIF version | ||
| Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
| Ref | Expression |
|---|---|
| vuniex | ⊢ ∪ 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | uniex 4483 | 1 ⊢ ∪ 𝑥 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∪ cuni 3849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-uni 3850 |
| This theorem is referenced by: omp1eomlem 7195 distop 14499 epttop 14504 fncld 14512 |
| Copyright terms: Public domain | W3C validator |