ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vuniex GIF version

Theorem vuniex 4360
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
Assertion
Ref Expression
vuniex 𝑥 ∈ V

Proof of Theorem vuniex
StepHypRef Expression
1 vex 2689 . 2 𝑥 ∈ V
21uniex 4359 1 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1480  Vcvv 2686   cuni 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-uni 3737
This theorem is referenced by:  omp1eomlem  6979  distop  12264  epttop  12269  fncld  12277
  Copyright terms: Public domain W3C validator