![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vuniex | GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2755 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | uniex 4455 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Vcvv 2752 ∪ cuni 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-uni 3825 |
This theorem is referenced by: omp1eomlem 7123 distop 14042 epttop 14047 fncld 14055 |
Copyright terms: Public domain | W3C validator |