ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vuniex GIF version

Theorem vuniex 4484
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
Assertion
Ref Expression
vuniex 𝑥 ∈ V

Proof of Theorem vuniex
StepHypRef Expression
1 vex 2774 . 2 𝑥 ∈ V
21uniex 4483 1 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-uni 3850
This theorem is referenced by:  omp1eomlem  7195  distop  14499  epttop  14504  fncld  14512
  Copyright terms: Public domain W3C validator