ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vuniex GIF version

Theorem vuniex 4439
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.)
Assertion
Ref Expression
vuniex 𝑥 ∈ V

Proof of Theorem vuniex
StepHypRef Expression
1 vex 2741 . 2 𝑥 ∈ V
21uniex 4438 1 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2738   cuni 3810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-uni 3811
This theorem is referenced by:  omp1eomlem  7093  distop  13588  epttop  13593  fncld  13601
  Copyright terms: Public domain W3C validator