Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0nnn0pnf | GIF version |
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nnn0pnf | ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9200 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
2 | pm2.53 717 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) |
4 | 3 | imp 123 | 1 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 +∞cpnf 7951 ℕ0cn0 9135 ℕ0*cxnn0 9198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-xr 7958 df-xnn0 9199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |