ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnn0pnf GIF version

Theorem xnn0nnn0pnf 9211
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 9200 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 pm2.53 717 . . 3 ((𝑁 ∈ ℕ0𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylbi 120 . 2 (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
43imp 123 1 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  +∞cpnf 7951  0cn0 9135  0*cxnn0 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-xr 7958  df-xnn0 9199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator