| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0nnn0pnf | GIF version | ||
| Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0nnn0pnf | ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9360 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | pm2.53 724 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2176 +∞cpnf 8104 ℕ0cn0 9295 ℕ0*cxnn0 9358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-xr 8111 df-xnn0 9359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |