ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xrnemnf Unicode version

Theorem xnn0xrnemnf 9315
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xrnemnf  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )

Proof of Theorem xnn0xrnemnf
StepHypRef Expression
1 xnn0xr 9308 . 2  |-  ( A  e. NN0*  ->  A  e.  RR* )
2 xnn0nemnf 9314 . 2  |-  ( A  e. NN0*  ->  A  =/= -oo )
31, 2jca 306 1  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    =/= wne 2364   -oocmnf 8052   RR*cxr 8053  NN0*cxnn0 9303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-pnf 8056  df-mnf 8057  df-xr 8058  df-inn 8983  df-n0 9241  df-xnn0 9304
This theorem is referenced by:  xnn0xadd0  9933  xnn0add4d  9952
  Copyright terms: Public domain W3C validator