Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0xrnemnf | Unicode version |
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xrnemnf | NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnn0xr 9152 | . 2 NN0* | |
2 | xnn0nemnf 9158 | . 2 NN0* | |
3 | 1, 2 | jca 304 | 1 NN0* |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 wne 2327 cmnf 7904 cxr 7905 NN0*cxnn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 ax-rnegex 7835 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-pnf 7908 df-mnf 7909 df-xr 7910 df-inn 8828 df-n0 9085 df-xnn0 9148 |
This theorem is referenced by: xnn0xadd0 9764 xnn0add4d 9783 |
Copyright terms: Public domain | W3C validator |