ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xrnemnf Unicode version

Theorem xnn0xrnemnf 9341
Description: The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xrnemnf  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )

Proof of Theorem xnn0xrnemnf
StepHypRef Expression
1 xnn0xr 9334 . 2  |-  ( A  e. NN0*  ->  A  e.  RR* )
2 xnn0nemnf 9340 . 2  |-  ( A  e. NN0*  ->  A  =/= -oo )
31, 2jca 306 1  |-  ( A  e. NN0*  ->  ( A  e. 
RR*  /\  A  =/= -oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    =/= wne 2367   -oocmnf 8076   RR*cxr 8077  NN0*cxnn0 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-pnf 8080  df-mnf 8081  df-xr 8082  df-inn 9008  df-n0 9267  df-xnn0 9330
This theorem is referenced by:  xnn0xadd0  9959  xnn0add4d  9978
  Copyright terms: Public domain W3C validator